Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling

被引:743
|
作者
Klein, D. R. [1 ]
MacNeill, D. [1 ]
Lado, J. L. [2 ,3 ]
Soriano, D. [2 ]
Navarro-Moratalla, E. [4 ]
Watanabe, K. [5 ]
Taniguchi, T. [5 ]
Manni, S. [6 ,7 ,8 ]
Canfield, P. [6 ,7 ]
Fernandez-Rossier, J. [2 ]
Jarillo-Herrero, P. [1 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] Int Iberian Nanotechnol Lab, QuantaLab, P-4715310 Braga, Portugal
[3] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[4] Univ Valencia, Inst Ciencia Mol, Paterna 46980, Spain
[5] Natl Inst Mat Sci, Tsukuba, Ibaraki, Japan
[6] Iowa State Univ, US DOE, Ames Lab, Ames, IA 50011 USA
[7] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
[8] Tata Inst Fundamental Res, Dept Condensed Matter Phys & Mat Sci, Bombay 400005, Maharashtra, India
关键词
SPIN-ORBIT TORQUES; INTRINSIC FERROMAGNETISM; FIELD; JUNCTIONS; ZERO; POLARIZATION; BILAYERS; HALL;
D O I
10.1126/science.aar3617
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Magnetic insulators are a key resource for next-generation spintronic and topological devices. The family of layered metal halides promises varied magnetic states, including ultrathin insulating multiferroics, spin liquids, and ferromagnets, but device-oriented characterization methods are needed to unlock their potential. Here, we report tunneling through the layered magnetic insulator CrI3 as a function of temperature and applied magnetic field. We electrically detect the magnetic ground state and interlayer coupling and observe a field-induced metamagnetic transition. Themetamagnetic transition results in magnetoresistances of 95, 300, and 550% for bilayer, trilayer, and tetralayer CrI3 barriers, respectively. We further measure inelastic tunneling spectra for our junctions, unveiling a rich spectrum consistent with collective magnetic excitations (magnons) in CrI3.
引用
收藏
页码:1218 / +
页数:5
相关论文
共 50 条
  • [31] Ultimate dielectric scaling of 2D transistors via van der Waals metal integration
    Weiqi Dang
    Bei Zhao
    Chang Liu
    Xiangdong Yang
    Lingan Kong
    Zheyi Lu
    Bo Li
    Jia Li
    Hongmei Zhang
    Wanying Li
    Shun Shi
    Ziyue Qin
    Lei Liao
    Xidong Duan
    Yuan Liu
    Nano Research, 2022, 15 : 1603 - 1608
  • [32] Universal Patterning for 2D Van der Waals Materials via Direct Optical Lithography
    Cho, Seong Rae
    Ahn, Seonghun
    Lee, Seung Hyung
    Ha, Heonhak
    Kim, Tae Soo
    Jo, Min-kyung
    Song, Chanwoo
    Im, Tae Hong
    Rani, Pragya
    Gyeon, Minseung
    Cho, Kiwon
    Song, Seungwoo
    Jang, Min Seok
    Cho, Yong-Hoon
    Lee, Keon Jae
    Kang, Kibum
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (47)
  • [33] Functionalizing nanophotonic structures with 2D van der Waals materials
    Meng, Yuan
    Zhong, Hongkun
    Xu, Zhihao
    He, Tiantian
    Kim, Justin S.
    Han, Sangmoon
    Kim, Sunok
    Park, Seoungwoong
    Shen, Yijie
    Gong, Mali
    Xiao, Qirong
    Bae, Sang-Hoon
    NANOSCALE HORIZONS, 2023, 8 (10) : 1345 - 1365
  • [34] 2D materials and van der Waals heterojunctions for neuromorphic computing
    Zhang, Zirui
    Yang, Dongliang
    Li, Huihan
    Li, Ce
    Wang, Zhongrui
    Sun, Linfeng
    Yang, Heejun
    NEUROMORPHIC COMPUTING AND ENGINEERING, 2022, 2 (03):
  • [35] Opto-valleytronics in the 2D van der Waals heterostructure
    Rasmita, Abdullah
    Gao, Wei-bo
    NANO RESEARCH, 2021, 14 (06) : 1901 - 1911
  • [36] Prospects and Opportunities of 2D van der Waals Magnetic Systems
    Wang, Meng-Chien
    Huang, Che-Chun
    Cheung, Chi-Ho
    Chen, Chih-Yu
    Tan, Seng Ghee
    Huang, Tsung-Wei
    Zhao, Yue
    Zhao, Yanfeng
    Wu, Gang
    Feng, Yuan-Ping
    Wu, Han-Chun
    Chang, Ching-Ray
    ANNALEN DER PHYSIK, 2020, 532 (05)
  • [37] Planar hyperbolic polaritons in 2D van der Waals materials
    Wang, Hongwei
    Kumar, Anshuman
    Dai, Siyuan
    Lin, Xiao
    Jacob, Zubin
    Oh, Sang-Hyun
    Menon, Vinod
    Narimanov, Evgenii
    Kim, Young Duck
    Wang, Jian-Ping
    Avouris, Phaedon
    Moreno, Luis Martin
    Caldwell, Joshua
    Low, Tony
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [38] Coexistence of ferroelectricity and antiferroelectricity in 2D van der Waals multiferroic
    Wu, Yangliu
    Zeng, Zhaozhuo
    Lu, Haipeng
    Han, Xiaocang
    Yang, Chendi
    Liu, Nanshu
    Zhao, Xiaoxu
    Qiao, Liang
    Ji, Wei
    Che, Renchao
    Deng, Longjiang
    Yan, Peng
    Peng, Bo
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [39] 2D van der Waals Inorganic Oxychloride Proton Conductor
    Ohta, Shingo
    Nozaki, Hiroshi
    Wang, Liang
    Jia, Hongfei
    Singh, Nikhilendra
    Arthur, Timothy
    Hashemi, Daniel
    Iizuka, Hideo
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (05) : 5490 - 5497
  • [40] Do 2D materials stack in a van der Waals fashion?
    Tejeda, Antonio
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (35)