Multi angle optimal pattern-based deep learning for automatic facial expression recognition

被引:56
|
作者
Jain, Deepak Kumar [1 ,2 ,3 ]
Zhang, Zhang [1 ,2 ,3 ]
Huang, Kaiqi [1 ,2 ,3 ]
机构
[1] CASIA, CRIPAC, Beijing, Peoples R China
[2] CASIA, NLPR, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Beijing, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
STM; SURF; CNN; LSTM; FACE RECOGNITION; MANIFOLD; PATCHES; ROBUST;
D O I
10.1016/j.patrec.2017.06.025
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Facial Expression Recognition (FER) plays the vital role in the Human Computer Interface (HCI) applications. The illumination and pose variations affect the FER adversely. The projection of complex 3D actions on the image plane and the inaccurate alignment are the major issues in the FER process. This paper presents the novel Multi-Angle Optimal Pattern-based Deep Learning (MAOP-DL) method to rectify the problem from sudden illumination changes, find the proper alignment of a feature set by using multi-angle-based optimal configurations. The proposed method includes the five major processes as Extended Boundary Background Subtraction (EBBS), Multi-Angle Texture Pattern+STM, Densely Extracted SURF+Local Occupancy Pattern (LOP), Priority Particle Cuckoo Search Optimization (PPCSO) and Long Short-Term Memory -Convolutional Neural Network (LSTM-CNN). Initially, the EBBS algorithm subtracts the background and isolates the foreground from the images which overcome the illumination and pose variation. Then, the MATP-STM extracts the texture patterns and DESURF-LOP extracts the relevant key features of the facial points. The PPCSO algorithm selects the relevant features from the MATP-STM feature set to speed up the classification. The employment of LSTM-CNN predicts the required label for the facial expressions.The major key findings of the proposed work are clear image analysis, effective handling of pose/illumination variations and the facial alignment. The proposed MAOP-DL validates its effectiveness on two standard databases such as CK+ and MMI regarding various metrics and confirm their assurance of wide applicability in recent applications. (C) 2017 Published by Elsevier B.V.
引用
收藏
页码:157 / 165
页数:9
相关论文
共 50 条
  • [41] A discriminative deep association learning for facial expression recognition
    Jin, Xing
    Sun, Wenyun
    Jin, Zhong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2020, 11 (04) : 779 - 793
  • [42] Deep Learning for Illumination Invariant Facial Expression Recognition
    Ruiz-Garcia, Ariel
    Palade, Vasile
    Elshaw, Mark
    Almakky, Ibrahim
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018, : 202 - 207
  • [43] A discriminative deep association learning for facial expression recognition
    Xing Jin
    Wenyun Sun
    Zhong Jin
    International Journal of Machine Learning and Cybernetics, 2020, 11 : 779 - 793
  • [44] Sparse deep feature learning for facial expression recognition
    Xie, Weicheng
    Jia, Xi
    Shen, Linlin
    Yang, Meng
    PATTERN RECOGNITION, 2019, 96
  • [45] Automatic facial expression recognition
    Lu, Huchuan
    Wu, Pei
    Lin, Hui
    Yang, Deli
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 2, PROCEEDINGS, 2006, 3972 : 63 - 68
  • [46] Facial Expression Recognition based on Transfer Learning from Deep Convolutional Networks
    Xu, Mao
    Cheng, Wei
    Zhao, Qian
    Ma, Li
    Xu, Fang
    2015 11TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2015, : 702 - 708
  • [47] Image based Static Facial Expression Recognition with Multiple Deep Network Learning
    Yu, Zhiding
    Zhang, Cha
    ICMI'15: PROCEEDINGS OF THE 2015 ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, 2015, : 435 - 442
  • [48] FACIAL EXPRESSION RECOGNITION ALGORITHM BASED ON DEEP LEARNING FOR STATIC AND DYNAMIC IMAGE
    Li, Qianqian
    Cui, Delong
    Peng, Zhiping
    Li, Qirui
    He, Jieguang
    Qiu, Jinbo
    Luo, Xinlong
    Ou, Jiangtao
    Fan, Chengyuan
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2023, 24 (06) : 1387 - 1406
  • [49] Deep Learning-based Facial Expression Recognition for Monitoring Neurological Disorders
    Yolcu, Gozde
    Oztel, Ismail
    Kazan, Serap
    Oz, Cemil
    Palaniappan, Kannappan
    Lever, Teresa E.
    Bunyak, Filiz
    2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 1652 - 1657
  • [50] Video-Based Facial Expression Recognition Using a Deep Learning Approach
    Jangid, Mahesh
    Paharia, Pranjul
    Srivastava, Sumit
    ADVANCES IN COMPUTER COMMUNICATION AND COMPUTATIONAL SCIENCES, IC4S 2018, 2019, 924 : 653 - 660