Multi angle optimal pattern-based deep learning for automatic facial expression recognition

被引:56
|
作者
Jain, Deepak Kumar [1 ,2 ,3 ]
Zhang, Zhang [1 ,2 ,3 ]
Huang, Kaiqi [1 ,2 ,3 ]
机构
[1] CASIA, CRIPAC, Beijing, Peoples R China
[2] CASIA, NLPR, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Beijing, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
STM; SURF; CNN; LSTM; FACE RECOGNITION; MANIFOLD; PATCHES; ROBUST;
D O I
10.1016/j.patrec.2017.06.025
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Facial Expression Recognition (FER) plays the vital role in the Human Computer Interface (HCI) applications. The illumination and pose variations affect the FER adversely. The projection of complex 3D actions on the image plane and the inaccurate alignment are the major issues in the FER process. This paper presents the novel Multi-Angle Optimal Pattern-based Deep Learning (MAOP-DL) method to rectify the problem from sudden illumination changes, find the proper alignment of a feature set by using multi-angle-based optimal configurations. The proposed method includes the five major processes as Extended Boundary Background Subtraction (EBBS), Multi-Angle Texture Pattern+STM, Densely Extracted SURF+Local Occupancy Pattern (LOP), Priority Particle Cuckoo Search Optimization (PPCSO) and Long Short-Term Memory -Convolutional Neural Network (LSTM-CNN). Initially, the EBBS algorithm subtracts the background and isolates the foreground from the images which overcome the illumination and pose variation. Then, the MATP-STM extracts the texture patterns and DESURF-LOP extracts the relevant key features of the facial points. The PPCSO algorithm selects the relevant features from the MATP-STM feature set to speed up the classification. The employment of LSTM-CNN predicts the required label for the facial expressions.The major key findings of the proposed work are clear image analysis, effective handling of pose/illumination variations and the facial alignment. The proposed MAOP-DL validates its effectiveness on two standard databases such as CK+ and MMI regarding various metrics and confirm their assurance of wide applicability in recent applications. (C) 2017 Published by Elsevier B.V.
引用
收藏
页码:157 / 165
页数:9
相关论文
共 50 条
  • [31] Development of Deep Learning-based Facial Expression Recognition System
    Jung, Heechul
    Lee, Sihaeng
    Park, Sunjeong
    Kim, Byungju
    Kim, Junmo
    Lee, Injae
    Ahn, Chunghyun
    2015 21ST KOREA-JAPAN JOINT WORKSHOP ON FRONTIERS OF COMPUTER VISION, 2015,
  • [32] Action Unit Based Facial Expression Recognition Using Deep Learning
    Al-Darraji, Salah
    Berns, Karsten
    Rodic, Aleksandar
    ADVANCES IN ROBOT DESIGN AND INTELLIGENT CONTROL, 2017, 540 : 413 - 420
  • [33] Deep Multi-task Learning for Facial Expression Recognition and Synthesis Based on Selective Feature Sharing
    Zhao, Rui
    Liu, Tianshan
    Xiao, Jun
    Lun, Daniel P. K.
    Lam, Kin-Man
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 4412 - 4419
  • [34] Intelligent facial expression recognition and classification using optimal deep transfer learning model
    Albraikan, Amani Abdulrahman
    Alzahrani, Jaber S.
    Alshahrani, Reem
    Yafoz, Ayman
    Alsini, Raed
    Hilal, Anwer Mustafa
    Alkhayyat, Ahmed
    Gupta, Deepak
    IMAGE AND VISION COMPUTING, 2022, 128
  • [35] Optimal Facial Feature Based Emotional Recognition Using Deep Learning Algorithm
    Arora, Tarun Kumar
    Chaubey, Pavan Kumar
    Raman, Manju Shree
    Kumar, Bhupendra
    Nagesh, Yagnam
    Anjani, P. K.
    Ahmed, Hamed M. S.
    Hashmi, Arshad
    Balamuralitharan, S.
    Debtera, Baru
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [36] Pattern-based peptide recognition
    Collins, Byron E.
    Anslyn, Eric V.
    CHEMISTRY-A EUROPEAN JOURNAL, 2007, 13 (17) : 4700 - 4708
  • [37] Automatic fabric pattern recognition and design based on deep learning and portable device
    Zhou, Xianke
    Li, Hang
    Zhang, Dejun
    INTERNET TECHNOLOGY LETTERS, 2023, 6 (05)
  • [38] Fused deep learning based Facial Expression Recognition of students in online learning mode
    Sumalakshmi, Chundakath House
    Vasuki, Perumal
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (21):
  • [39] Automatic Facial Expression Recognition Based on a Deep Convolutional-Neural-Network Structure
    Shan, Ke
    Guo, Junqi
    You, Wenwan
    Lu, Di
    Bie, Rongfang
    2017 IEEE/ACIS 15TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING RESEARCH, MANAGEMENT AND APPLICATIONS (SERA), 2017, : 123 - 128
  • [40] Joint Deep Learning of Facial Expression Synthesis and Recognition
    Yan, Yan
    Huang, Ying
    Chen, Si
    Shen, Chunhua
    Wang, Hanzi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (11) : 2792 - 2807