PCA-based denoising method for division of focal plane polarimeters

被引:52
|
作者
Zhang, Junchao [1 ,2 ,3 ]
Luo, Haibo [1 ,3 ,4 ]
Liang, Rongguang [5 ]
Zhou, Wei [6 ]
Hui, Bin [1 ,3 ,4 ]
Chang, Zheng [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, Shenyang 110016, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Key Lab Opt Elect Informat Proc, Shenyang 110016, Peoples R China
[4] Key Lab Image Understanding & Comp Vis, Shenyang 110016, Peoples R China
[5] Univ Arizona, Ctr Opt Sci, Tucson, AZ 85721 USA
[6] AVIC Jiangxi HONGDU Aviat Ind Grp LTD, Nanchang 220024, Jiangxi, Peoples R China
来源
OPTICS EXPRESS | 2017年 / 25卷 / 03期
关键词
IMAGE INTERPOLATION;
D O I
10.1364/OE.25.002391
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Division of focal plane (DoFP) polarimeters are composed of interlaced linear polarizers overlaid upon a focal plane array sensor. The interpolation is essential to reconstruct polarization information. However, current interpolation methods are based on the unrealistic assumption of noise-free images. Thus, it is advantageous to carry out denoising before interpolation. In this paper, we propose a principle component analysis (PCA) based denoising method, which works directly on DoFP images. Both simulated and real DoFP images are used to evaluate the denoising performance. Experimental results show that the proposed method can effectively suppress noise while preserving edges. (C) 2017 Optical Society of America
引用
收藏
页码:2391 / 2400
页数:10
相关论文
共 50 条
  • [31] Compact polarimeters based on polarization-sensitive focal plane arrays
    Vorobiev, Dmitry
    Ninkov, Zoran
    SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE, 2014, 9143
  • [32] An enhanced PCA-based chiller sensor fault detection method using ensemble empirical mode decomposition based denoising
    Li, Guannan
    Hu, Yunpeng
    ENERGY AND BUILDINGS, 2019, 183 : 311 - 324
  • [33] Efficient sparse PCA-based method for motion recognition
    Xiang, Jian
    Zhu, Hongli
    Journal of Information and Computational Science, 2014, 11 (17): : 6419 - 6426
  • [34] A PCA-based method for construction of composite sustainability indicators
    Tao Li
    Hongchao Zhang
    Chris Yuan
    Zhichao Liu
    Chengcheng Fan
    The International Journal of Life Cycle Assessment, 2012, 17 : 593 - 603
  • [35] A New Classification Method for PCA-based Face Recognition
    Zhou, Xiaofei
    Shi, Yong
    Zhang, Peng
    Nie, Guangli
    Jiang, Wenhan
    2009 INTERNATIONAL CONFERENCE ON BUSINESS INTELLIGENCE AND FINANCIAL ENGINEERING, PROCEEDINGS, 2009, : 445 - 449
  • [36] Snake Validation: A PCA-Based Outlier Detection Method
    Saha, Baidya Nath
    Ray, Nilanjan
    Zhang, Hong
    IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (06) : 549 - 552
  • [37] A PCA-based method for construction of composite sustainability indicators
    Li, Tao
    Zhang, Hongchao
    Yuan, Chris
    Liu, Zhichao
    Fan, Chengcheng
    INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2012, 17 (05): : 593 - 603
  • [38] Novel "quasi-Bayer" micro-polarizer patterns for the division-of-focal-plane polarimeters
    Deng, Peigang
    Jin, Rui-Bo
    Zhao, Xiaojin
    Cao, Yuan
    Yu, Jianhua
    OPTIK, 2017, 132 : 216 - 222
  • [39] A PCA-based Modeling Method for Wireless MIMO Channel
    Ma, Xiaochuan
    Zhang, Jianhua
    Zhang, Yuxiang
    Ma, Zhanyu
    Zhang, Yu
    2017 IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2017, : 874 - 879
  • [40] Residual Interpolation Integrated Pixel-by-Pixel Adaptive Iterative Process for Division of Focal Plane Polarimeters
    Yang, Jie
    Jin, Weiqi
    Qiu, Su
    Xue, Fuduo
    Wang, Meishu
    SENSORS, 2022, 22 (04)