PCA-based denoising method for division of focal plane polarimeters

被引:52
|
作者
Zhang, Junchao [1 ,2 ,3 ]
Luo, Haibo [1 ,3 ,4 ]
Liang, Rongguang [5 ]
Zhou, Wei [6 ]
Hui, Bin [1 ,3 ,4 ]
Chang, Zheng [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, Shenyang 110016, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Key Lab Opt Elect Informat Proc, Shenyang 110016, Peoples R China
[4] Key Lab Image Understanding & Comp Vis, Shenyang 110016, Peoples R China
[5] Univ Arizona, Ctr Opt Sci, Tucson, AZ 85721 USA
[6] AVIC Jiangxi HONGDU Aviat Ind Grp LTD, Nanchang 220024, Jiangxi, Peoples R China
来源
OPTICS EXPRESS | 2017年 / 25卷 / 03期
关键词
IMAGE INTERPOLATION;
D O I
10.1364/OE.25.002391
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Division of focal plane (DoFP) polarimeters are composed of interlaced linear polarizers overlaid upon a focal plane array sensor. The interpolation is essential to reconstruct polarization information. However, current interpolation methods are based on the unrealistic assumption of noise-free images. Thus, it is advantageous to carry out denoising before interpolation. In this paper, we propose a principle component analysis (PCA) based denoising method, which works directly on DoFP images. Both simulated and real DoFP images are used to evaluate the denoising performance. Experimental results show that the proposed method can effectively suppress noise while preserving edges. (C) 2017 Optical Society of America
引用
收藏
页码:2391 / 2400
页数:10
相关论文
共 50 条
  • [21] Temporal and spatial error model for estimating the measurement precision of the division of focal plane polarimeters
    Yang, Jie
    Qiu, Su
    Jin, Weiqi
    Xue, Fuduo
    OPTICS EXPRESS, 2021, 29 (13): : 20808 - 20828
  • [22] Dual division of focal plane polarimeters-based collinear reflection Mueller matrix fast imaging microscope
    Huang, Tongyu
    Meng, Ruoyu
    Song, Jiawei
    Bu, Tongjun
    Zhu, Yuanhuan
    Li, Migao
    Liao, Ran
    Ma, Hui
    JOURNAL OF BIOMEDICAL OPTICS, 2022, 27 (08)
  • [23] PCA-Based Denoising Algorithm for Outdoor Lidar Point Cloud Data
    Cheng, Dongyang
    Zhao, Dangjun
    Zhang, Junchao
    Wei, Caisheng
    Tian, Di
    SENSORS, 2021, 21 (11)
  • [24] Evaluation of calibration methods for visible-spectrum division-of-focal plane polarimeters
    Powell, S. Bear
    Gruev, Viktor
    POLARIZATION SCIENCE AND REMOTE SENSING VI, 2013, 8873
  • [25] The use of self-adaptive principal components in PCA-based denoising
    Petrov, Oleg, V
    JOURNAL OF MAGNETIC RESONANCE, 2025, 371
  • [26] PCA-BASED DENOISING OF SENSOR PATTERN NOISE FOR SOURCE CAMERA IDENTIFICATION
    Li, Ruizhe
    Guan, Yu
    Li, Chang-Tsun
    2014 IEEE CHINA SUMMIT & INTERNATIONAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (CHINASIP), 2014, : 436 - 440
  • [27] An efficient PCA-based color transfer method
    Abadpour, Arash
    Kasaei, Shohreh
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2007, 18 (01) : 15 - 34
  • [28] A novel iterative PCA-based pansharpening method
    Ghadjati, Mohamed
    Moussaoui, Abdelkrim
    Boukharouba, Abdelhak
    REMOTE SENSING LETTERS, 2019, 10 (03) : 264 - 273
  • [29] PCA-based integrative spectrum identification method
    School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, China
    不详
    Dongbei Daxue Xuebao/Journal of Northeastern University, 2008, 29 (09): : 1322 - 1325
  • [30] Precision of retardance autocalibration in full-Stokes division-of-focal-plane imaging polarimeters
    Goudail, Francois
    Li, Xiaobo
    Boffety, Matthieu
    Roussel, Stephane
    Liu, Tiegen
    Hu, Haofeng
    OPTICS LETTERS, 2019, 44 (22) : 5410 - 5413