An Approximation of Subfractional Brownian Motion

被引:19
|
作者
Shen, Guangjun [1 ]
Yan, Litan [2 ]
机构
[1] Anhui Normal Univ, Dept Math, Wuhu 241000, Peoples R China
[2] Donghua Univ, Dept Math, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Martingale differences; Subfractional Brownian motion; Convergence in distribution; OCCUPATION TIME FLUCTUATIONS; GAUSSIAN-PROCESSES; WEAK-CONVERGENCE; MARTINGALE-DIFFERENCES; ROSENBLATT PROCESS; PARTICLE-SYSTEMS; LOCAL TIME; RESPECT;
D O I
10.1080/03610926.2013.769598
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we obtain an approximation theorem for subfractional Brownian motion with H > 1/2, using martingale differences. The proof involves the tightness and identification of finite dimensional distributions.
引用
收藏
页码:1873 / 1886
页数:14
相关论文
共 50 条