An Approximation of Subfractional Brownian Motion

被引:19
|
作者
Shen, Guangjun [1 ]
Yan, Litan [2 ]
机构
[1] Anhui Normal Univ, Dept Math, Wuhu 241000, Peoples R China
[2] Donghua Univ, Dept Math, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Martingale differences; Subfractional Brownian motion; Convergence in distribution; OCCUPATION TIME FLUCTUATIONS; GAUSSIAN-PROCESSES; WEAK-CONVERGENCE; MARTINGALE-DIFFERENCES; ROSENBLATT PROCESS; PARTICLE-SYSTEMS; LOCAL TIME; RESPECT;
D O I
10.1080/03610926.2013.769598
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we obtain an approximation theorem for subfractional Brownian motion with H > 1/2, using martingale differences. The proof involves the tightness and identification of finite dimensional distributions.
引用
收藏
页码:1873 / 1886
页数:14
相关论文
共 50 条
  • [21] Nonparametric estimation of linear multiplier for processes driven by subfractional Brownian motion
    Rao, B. L. S. Prakasa
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2019, 37 (05) : 799 - 810
  • [22] Remarks on asymptotic behavior of weighted quadratic variation of subfractional Brownian motion
    Liu, Junfeng
    Yan, Litan
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2012, 41 (02) : 177 - 187
  • [23] Remarks on asymptotic behavior of weighted quadratic variation of subfractional Brownian motion
    Junfeng Liu
    Litan Yan
    Journal of the Korean Statistical Society, 2012, 41 : 177 - 187
  • [24] Remarks on Confidence Intervals for Self-Similarity Parameter of a Subfractional Brownian Motion
    Liu, Junfeng
    Yan, Litan
    Peng, Zhihang
    Wang, Deqing
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [25] A Remark on Weighted Cubic Variation of Subfractional Brownian Motion with H<1/6
    Junfeng LIU
    Journal of Mathematical Research with Applications, 2015, 35 (05) : 568 - 580
  • [26] Approximation of Fractional Brownian Motion by Martingales
    Shklyar, Sergiy
    Shevchenko, Georgiy
    Mishura, Yuliya
    Doroshenko, Vadym
    Banna, Oksana
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2014, 16 (03) : 539 - 560
  • [27] A note on approximation to multifractional Brownian motion
    HongShuai Dai
    YuQiang Li
    Science China Mathematics, 2011, 54 : 2145 - 2154
  • [28] A note on approximation to multifractional Brownian motion
    Dai HongShuai
    Li YuQiang
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (10) : 2145 - 2154
  • [29] Adaptive approximation of the minimum of Brownian motion
    Calvin, James M.
    Hefter, Mario
    Herzwurm, Andre
    JOURNAL OF COMPLEXITY, 2017, 39 : 17 - 37
  • [30] A note on approximation to multifractional Brownian motion
    DAI HongShuai1 & LI YuQiang2 1College of Mathematics and Information Sciences
    2School of Finance and Statistics
    Science China(Mathematics), 2011, 54 (10) : 2145 - 2154