Scaling properties of generalized Carlitz sequences of polynomials

被引:2
|
作者
Barbé, A
von Haeseler, F
Skordev, G
机构
[1] Katholieke Univ Leuven, Dept Elect Engn, B-3001 Louvain, Belgium
[2] Univ Bremen, Cevis, D-28359 Bremen, Germany
关键词
polynomial sequences; number representations; numeration systems; scaling; geometric limits; self-similarity; fractals;
D O I
10.1016/j.dam.2004.02.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider graphical representations of generalized Carlitz sequences of polynomials. These generalized Carlitz sequences are based on certain numeration systems of the natural numbers. We establish conditions under which a sequence of properly rescaled graphical representations converges to a limit (w.r.t. Hausdorff distance). (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:166 / 181
页数:16
相关论文
共 50 条
  • [31] On combinatorics of Al-Salam Carlitz polynomials
    Kim, D
    EUROPEAN JOURNAL OF COMBINATORICS, 1997, 18 (03) : 295 - 302
  • [32] ON CARLITZ'S DEGENERATE EULER NUMBERS AND POLYNOMIALS
    Kim, Dae San
    Kim, Taekyun
    Dolgy, Dmitry V.
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 21 (04) : 738 - 742
  • [33] CARLITZ GENERALIZATIONS OF LUCAS AND LEHMER SEQUENCES
    SHANNON, AG
    MELHAM, RS
    FIBONACCI QUARTERLY, 1993, 31 (02): : 105 - 111
  • [34] The self-affine property of (U, r)-Carlitz sequences of polynomials deciphered in terms of graph directed IFS
    Ni, Tian-Jia
    Wen, Zhi-Ying
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (18) : 3728 - 3742
  • [35] A PROBABILISTIC PROOF OF A FORMULA FOR JACOBI POLYNOMIALS BY CARLITZ,L
    MILCH, PR
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1968, 64 : 695 - &
  • [36] SOME PROPERTIES OF GENERALIZED HERMITE POLYNOMIALS
    JOSHI, CM
    PRAJAPAT, ML
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A10 - A10
  • [37] Properties of the zeros of generalized hypergeometric polynomials
    Bihun, Oksana
    Calogero, Francesco
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 419 (02) : 1076 - 1094
  • [38] Network properties of a pair of generalized polynomials
    Swamy, MNS
    FIBONACCI QUARTERLY, 1999, 37 (04): : 350 - 360
  • [39] ON THE SYMMETRIC PROPERTIES FOR THE GENERALIZED GENOCCHI POLYNOMIALS
    Rim, Seog-Hoon
    Moon, Eun-Jung
    Jin, Jeong-Hee
    Lee, Sun-Jung
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2011, 13 (07) : 1240 - 1245
  • [40] Divisibility properties of generalized Laguerre polynomials
    Fuchs, Clemens
    Shorey, T. N.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2009, 20 (02): : 217 - 231