CARLITZ GENERALIZATIONS OF LUCAS AND LEHMER SEQUENCES

被引:0
|
作者
SHANNON, AG [1 ]
MELHAM, RS [1 ]
机构
[1] UNIV TECHNOL SYDNEY, SYDNEY, NSW 2007, AUSTRALIA
来源
FIBONACCI QUARTERLY | 1993年 / 31卷 / 02期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:105 / 111
页数:7
相关论文
共 50 条
  • [1] PRIMITIVE DIVISORS OF LUCAS AND LEHMER SEQUENCES
    VOUTIER, PM
    MATHEMATICS OF COMPUTATION, 1995, 64 (210) : 869 - 888
  • [2] Shifted powers in Lucas–Lehmer sequences
    Michael A. Bennett
    Vandita Patel
    Samir Siksek
    Research in Number Theory, 2019, 5
  • [3] Primitive divisors of Lucas and Lehmer sequences, III
    Voutier, PM
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 123 : 407 - 419
  • [4] Shifted powers in Lucas-Lehmer sequences
    Bennett, Michael A.
    Patel, Vandita
    Siksek, Samir
    RESEARCH IN NUMBER THEORY, 2019, 5 (01)
  • [5] THE G.C.D. IN LUCAS SEQUENCES AND LEHMER NUMBER SEQUENCES
    MCDANIEL, WL
    FIBONACCI QUARTERLY, 1991, 29 (01): : 24 - 29
  • [6] The ABC conjecture and prime divisors of the Lucas and Lehmer sequences
    Murty, R
    Wong, S
    NUMBER THEORY FOR THE MILLENNIUM III, 2002, : 43 - 54
  • [7] Generalizations of Carlitz Compositions
    Corteel, Sylvie
    Hitczenko, Pawel
    JOURNAL OF INTEGER SEQUENCES, 2007, 10 (08)
  • [8] Common factors in series of consecutive terms of associated Lucas and Lehmer sequences
    Hajdu, L.
    Szikszai, M.
    FIBONACCI QUARTERLY, 2015, 53 (03): : 221 - 229
  • [9] A problem of Carlitz and its generalizations
    Xinliang Pan
    XiaoRui Zhao
    Wei Cao
    Archiv der Mathematik, 2014, 102 : 337 - 343
  • [10] On divisors of Lucas and Lehmer numbers
    Stewart, Cameron L.
    ACTA MATHEMATICA, 2013, 211 (02) : 291 - 314