CARLITZ GENERALIZATIONS OF LUCAS AND LEHMER SEQUENCES

被引:0
|
作者
SHANNON, AG [1 ]
MELHAM, RS [1 ]
机构
[1] UNIV TECHNOL SYDNEY, SYDNEY, NSW 2007, AUSTRALIA
来源
FIBONACCI QUARTERLY | 1993年 / 31卷 / 02期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:105 / 111
页数:7
相关论文
共 50 条
  • [31] ON SOME ARITHMETICAL PROPERTIES OF LUCAS AND LEHMER-NUMBERS
    GYORY, K
    ACTA ARITHMETICA, 1982, 40 (04) : 369 - 373
  • [32] A REALLY TRIVIAL PROOF OF THE LUCAS-LEHMER TEST
    BRUCE, JW
    AMERICAN MATHEMATICAL MONTHLY, 1993, 100 (04): : 370 - 371
  • [33] Generalizations of the Fibonacci-Lucas Relations
    Kuhapatanakul, K.
    Thongsing, K.
    AMERICAN MATHEMATICAL MONTHLY, 2019, 126 (01): : 81 - 81
  • [34] GENERALIZED LUCAS-LEHMER TESTS USING PELL CONICS
    Hambleton, Samuel A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (08) : 2653 - 2661
  • [35] A Lucas–Lehmer approach to generalised Lebesgue–Ramanujan–Nagell equations
    Vandita Patel
    The Ramanujan Journal, 2021, 56 : 585 - 596
  • [36] Schur congruences, Carlitz sequences of polynomials and automaticity
    Allouche, JP
    Skordev, G
    DISCRETE MATHEMATICS, 2000, 214 (1-3) : 21 - 49
  • [37] ON GENERALIZED LUCAS AND PELL-LUCAS SEQUENCES
    Tasci, Dursun
    Tas, Zisan Kusaksiz
    JOURNAL OF SCIENCE AND ARTS, 2019, (03): : 637 - 646
  • [38] ONE PARAMETER GENERALIZATIONS OF THE FIBONACCI AND LUCAS NUMBERS
    Ismail, Mourad E. H.
    FIBONACCI QUARTERLY, 2008, 46-47 (02): : 167 - 180
  • [39] Palindromes in Lucas Sequences
    Florian Luca
    Monatshefte für Mathematik, 2003, 138 : 209 - 223
  • [40] On the discriminator of Lucas sequences
    Faye, Bernadette
    Luca, Florian
    Moree, Pieter
    ANNALES MATHEMATIQUES DU QUEBEC, 2019, 43 (01): : 51 - 71