Roman {k}-domination in trees and complexity results for some classes of graphs

被引:3
|
作者
Wang, Cai-Xia [1 ]
Yang, Yu [1 ]
Wang, Hong-Juan [1 ]
Xu, Shou-Jun [1 ]
机构
[1] Lanzhou Univ, Gansu Key Lab Appl Math & Complex Syst, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Roman {k}-domination number; Domination number; Trees; NP-complete; RAINBOW DOMINATION;
D O I
10.1007/s10878-021-00735-z
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we study Roman {k}-dominating functions on a graph G with vertex set V for a positive integer k: a variant of {k}-dominating functions, generations of Roman {2}-dominating functions and the characteristic functions of dominating sets, respectively, which unify classic domination parameters with certain Roman domination parameters on G. Let k >= 1 be an integer, and a function f : V -> {0, 1,..., k} defined on V called a Roman {k}-dominating function if for every vertex v is an element of V with f (v) = 0, Sigma(u is an element of N(v)) f (u) >= k, where N(v) is the open neighborhood of v in G. The minimum value Sigma(u is an element of V) f (u) for a Roman {k}-dominating function f on G is called the Roman {k}-domination number of G, denoted by gamma({Rk})(G). We first present bounds on gamma({Rk}) (G) in terms of other domination parameters, including gamma({Rk})(G) <= k gamma (G). Secondly, we show one of our main results: characterizing the trees achieving equality in the bound mentioned above, which generalizes M.A. Henning and W.F. klostermeyer's results on the Roman {2}-domination number (Henning and Klostermeyer in Discrete Appl Math 217:557-564, 2017). Finally, we show that for every fixed k is an element of Z(+), associated decision problem for the Roman {k}-domination is NP-complete, even for bipartite planar graphs, chordal bipartite graphs and undirected path graphs.
引用
收藏
页码:174 / 186
页数:13
相关论文
共 50 条
  • [1] Roman {k}-domination in trees and complexity results for some classes of graphs
    Cai-Xia Wang
    Yu Yang
    Hong-Juan Wang
    Shou-Jun Xu
    Journal of Combinatorial Optimization, 2021, 42 : 174 - 186
  • [2] Efficient algorithms for Roman domination on some classes of graphs
    Liedloff, Mathieu
    Kloks, Ton
    Liu, Jiping
    Peng, Sheng-Lung
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (18) : 3400 - 3415
  • [3] Further Results on the [k]-Roman Domination in Graphs
    Valenzuela-Tripodoro, Juan Carlos
    Mateos-Camacho, Maria Antonia
    Lopez, Martin Cera
    Alvarez-Ruiz, Maria Pilar
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2024, 50 (02)
  • [4] Further Results on the [k]-Roman Domination in Graphs
    Juan Carlos Valenzuela-Tripodoro
    Maria Antonia Mateos-Camacho
    Martin Cera Lopez
    Maria Pilar Álvarez-Ruiz
    Bulletin of the Iranian Mathematical Society, 2024, 50
  • [5] Perfect Roman {3}-Domination in Graphs: Complexity and Bound of Perfect Roman {3}-Domination Number of Trees
    Almulhim, Ahlam
    JOURNAL OF MATHEMATICS, 2024, 2024 (01)
  • [6] Some complexity results on semipaired domination in graphs
    Tripathi, Vikash
    Pandey, Arti
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2024,
  • [8] Complexity of Roman {2}-domination and the double Roman domination in graphs
    Padamutham, Chakradhar
    Palagiri, Venkata Subba Reddy
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 1081 - 1086
  • [9] SOME RESULTS ON THE GLOBAL TRIPLE ROMAN DOMINATION IN GRAPHS
    Hao, Guoliang
    Xie, Zhihong
    Chen, Xiaodan
    Sheikholeslami, Seyed mahmoud
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024,
  • [10] SOME RESULTS ON ROMAN DOMINATION EDGE CRITICAL GRAPHS
    Chellali, Mustapha
    Rad, Nader Jafari
    Volkmann, Lutz
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2012, 9 (02) : 195 - 203