Roman {k}-domination in trees and complexity results for some classes of graphs

被引:3
|
作者
Wang, Cai-Xia [1 ]
Yang, Yu [1 ]
Wang, Hong-Juan [1 ]
Xu, Shou-Jun [1 ]
机构
[1] Lanzhou Univ, Gansu Key Lab Appl Math & Complex Syst, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Roman {k}-domination number; Domination number; Trees; NP-complete; RAINBOW DOMINATION;
D O I
10.1007/s10878-021-00735-z
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we study Roman {k}-dominating functions on a graph G with vertex set V for a positive integer k: a variant of {k}-dominating functions, generations of Roman {2}-dominating functions and the characteristic functions of dominating sets, respectively, which unify classic domination parameters with certain Roman domination parameters on G. Let k >= 1 be an integer, and a function f : V -> {0, 1,..., k} defined on V called a Roman {k}-dominating function if for every vertex v is an element of V with f (v) = 0, Sigma(u is an element of N(v)) f (u) >= k, where N(v) is the open neighborhood of v in G. The minimum value Sigma(u is an element of V) f (u) for a Roman {k}-dominating function f on G is called the Roman {k}-domination number of G, denoted by gamma({Rk})(G). We first present bounds on gamma({Rk}) (G) in terms of other domination parameters, including gamma({Rk})(G) <= k gamma (G). Secondly, we show one of our main results: characterizing the trees achieving equality in the bound mentioned above, which generalizes M.A. Henning and W.F. klostermeyer's results on the Roman {2}-domination number (Henning and Klostermeyer in Discrete Appl Math 217:557-564, 2017). Finally, we show that for every fixed k is an element of Z(+), associated decision problem for the Roman {k}-domination is NP-complete, even for bipartite planar graphs, chordal bipartite graphs and undirected path graphs.
引用
收藏
页码:174 / 186
页数:13
相关论文
共 50 条
  • [22] Roman {3}-domination in graphs: Complexity and algorithms
    Chaudhary, Juhi
    Pradhan, Dinabandhu
    DISCRETE APPLIED MATHEMATICS, 2024, 354 : 301 - 325
  • [23] INDEPENDENT [k]-ROMAN DOMINATION ON GRAPHS
    Luiz, Atilio g.
    Vieira, Francisco anderson silva
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2025,
  • [24] SOME RESULTS ON THE k-ALLIANCE AND DOMINATION OF GRAPHS
    Chen, Hongzhang
    Li, Jianxi
    Sun, Bin
    Xu, Shou-Jun
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024,
  • [25] ROMAN k-DOMINATION IN GRAPHS
    Kaemmerling, Karsten
    Volkmann, Lutz
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (06) : 1309 - 1318
  • [26] On the complexity of {k}-domination and k-tuple domination in graphs
    Argiroffo, Gabriela
    Leoni, Valeria
    Torres, Pablo
    INFORMATION PROCESSING LETTERS, 2015, 115 (6-8) : 556 - 561
  • [27] Roman Domination of Some Chemical Graphs
    Sangolli, Pallavi
    Gudgeri, Manjula C.
    Varsha
    Shirkol, Shailaja S.
    JOURNAL OF PHARMACEUTICAL RESEARCH INTERNATIONAL, 2021, 33 (47A) : 556 - 562
  • [28] Double Roman domination in some graphs
    Meena, J.
    Mai, T. N. M. Malini
    Suresh, M. L.
    Rathour, Laxmi
    Mishra, Lakshmi Narayan
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2025,
  • [29] Complexity Results on Cosecure Domination in Graphs
    Kusum
    Pandey, Arti
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2023, 2023, 13947 : 335 - 347
  • [30] The Characterizations and Complexity of Roman {2}-Domination and 2-Domination in Graphs
    School of Mathematics and Statistics, Gansu Center for Applied Mathematics, Lanzhou University, Gansu, Lanzhou
    730000, China
    不详
    730000, China
    Lect. Notes Comput. Sci., (182-193):