Parameter estimation for univariate Skew-Normal distribution based on the modified empirical characteristic function

被引:0
|
作者
Hou, Gege [1 ]
Xu, Ancha [2 ]
Cai, Fengjing [3 ]
Wang, You-Gan [4 ]
机构
[1] Northwestern Polytech Univ, Sch Mech Engn, Xian, Peoples R China
[2] Zhejiang Gongshang Univ, Dept Stat, Hangzhou, Zhejiang, Peoples R China
[3] Wenzhou Univ, Coll Math & Informat Sci, Wenzhou, Peoples R China
[4] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld, Australia
基金
中国国家自然科学基金;
关键词
Skew-normal distribution; empirical characteristic function; M-estimator; bootstrap;
D O I
10.1080/03610926.2021.1883655
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Parameter estimation for the skew-normal distribution is challenging, since the profile likelihood function of shape parameter has a stationary point at zero, which hampers the use of traditional methods, such as maximum likelihood method. We present a modified empirical characteristic function method to perform parameter estimation for the skew-normal distribution. The proposed approach is flexible and easy to implement. We show that the estimators converge to the true values in probability. The simulation study and data analysis suggest that the proposed method performs well, even for the case of small sample size.
引用
收藏
页码:7897 / 7910
页数:14
相关论文
共 50 条
  • [41] The Exponential-Centred Skew-Normal Distribution
    Martinez-Florez, Guillermo
    Barrera-Causil, Carlos
    Marmolejo-Ramos, Fernando
    SYMMETRY-BASEL, 2020, 12 (07):
  • [42] Multivariate measures of skewness for the skew-normal distribution
    Balakrishnan, N.
    Scarpa, Bruno
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 104 (01) : 73 - 87
  • [43] A new generalized Balakrishnan skew-normal distribution
    Hasanalipour, P.
    Sharafi, M.
    STATISTICAL PAPERS, 2012, 53 (01) : 219 - 228
  • [44] A new generalized Balakrishnan skew-normal distribution
    P. Hasanalipour
    M. Sharafi
    Statistical Papers, 2012, 53 : 219 - 228
  • [45] Adaptive control charts for skew-normal distribution
    Chiang, Jyun-You
    Tsai, Tzong-Ru
    Su, Nan-Cheng
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2018, 34 (04) : 589 - 608
  • [46] Some properties of the unified skew-normal distribution
    Arellano-Valle, Reinaldo B.
    Azzalini, Adelchi
    STATISTICAL PAPERS, 2022, 63 (02) : 461 - 487
  • [47] Skew-Normal Approximation to the Negative Binomial Distribution
    Chang, Ching-Hui
    Lin, Jyh-Jiuan
    Chiang, Miao-Chen
    IMSCI '08: 2ND INTERNATIONAL MULTI-CONFERENCE ON SOCIETY, CYBERNETICS AND INFORMATICS, VOL III, PROCEEDINGS, 2008, : 147 - +
  • [48] A generalized skew two-piece skew-normal distribution
    A. Jamalizadeh
    A. R. Arabpour
    N. Balakrishnan
    Statistical Papers, 2011, 52 : 431 - 446
  • [49] Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions
    Fruehwirth-Schnatter, Sylvia
    Pyne, Saumyadipta
    BIOSTATISTICS, 2010, 11 (02) : 317 - 336
  • [50] On the correlation structures of multivariate skew-normal distribution
    Kaarik, Ene
    Kaarik, Meelis
    Maadik, Inger-Helen
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2016, 20 (01): : 83 - 100