Parameter estimation for univariate Skew-Normal distribution based on the modified empirical characteristic function

被引:0
|
作者
Hou, Gege [1 ]
Xu, Ancha [2 ]
Cai, Fengjing [3 ]
Wang, You-Gan [4 ]
机构
[1] Northwestern Polytech Univ, Sch Mech Engn, Xian, Peoples R China
[2] Zhejiang Gongshang Univ, Dept Stat, Hangzhou, Zhejiang, Peoples R China
[3] Wenzhou Univ, Coll Math & Informat Sci, Wenzhou, Peoples R China
[4] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld, Australia
基金
中国国家自然科学基金;
关键词
Skew-normal distribution; empirical characteristic function; M-estimator; bootstrap;
D O I
10.1080/03610926.2021.1883655
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Parameter estimation for the skew-normal distribution is challenging, since the profile likelihood function of shape parameter has a stationary point at zero, which hampers the use of traditional methods, such as maximum likelihood method. We present a modified empirical characteristic function method to perform parameter estimation for the skew-normal distribution. The proposed approach is flexible and easy to implement. We show that the estimators converge to the true values in probability. The simulation study and data analysis suggest that the proposed method performs well, even for the case of small sample size.
引用
收藏
页码:7897 / 7910
页数:14
相关论文
共 50 条
  • [31] The wrapped skew-normal distribution on the circle
    Pewsey, A
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2000, 29 (11) : 2459 - 2472
  • [32] On Parametrization of Multivariate Skew-Normal Distribution
    Kaeaerik, Meelis
    Selart, Anne
    Kaeaerik, Ene
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (09) : 1869 - 1885
  • [33] A study of generalized skew-normal distribution
    Huang, Wen-Jang
    Su, Nan-Cheng
    Gupta, Arjun K.
    STATISTICS, 2013, 47 (05) : 942 - 953
  • [34] An appropriate empirical version of skew-normal density
    Abtahi, A.
    Towhidi, M.
    Behboodian, J.
    STATISTICAL PAPERS, 2011, 52 (02) : 469 - 489
  • [35] An appropriate empirical version of skew-normal density
    A. Abtahi
    M. Towhidi
    J. Behboodian
    Statistical Papers, 2011, 52 : 469 - 489
  • [36] Inferences on The Standard Skew-Normal Distribution
    Pal, Nabendu
    Lim, Wooi K.
    Thongteeraparp, Ampai
    THAILAND STATISTICIAN, 2012, 10 (02): : 225 - 246
  • [37] A generalization of the Balakrishnan skew-normal distribution
    Yadegari, Iraj
    Gerami, Abbas
    Khaledi, Majid Jafari
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (10) : 1165 - 1167
  • [38] A dynamic linear model with extended skew-normal for the initial distribution of the state parameter
    Barbosa Cabral, Celso Romulo
    da-Silva, Cibele Queiroz
    Migon, Helio S.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 74 : 64 - 80
  • [39] A generalized skew two-piece skew-normal distribution
    Jamalizadeh, A.
    Arabpour, A. R.
    Balakrishnan, N.
    STATISTICAL PAPERS, 2011, 52 (02) : 431 - 446
  • [40] Large sample confidence intervals for the skewness parameter of the skew-normal distribution based on Fisher's transformation
    Mameli, Valentina
    Musio, Monica
    Sauleau, Erik
    Biggeri, Annibale
    JOURNAL OF APPLIED STATISTICS, 2012, 39 (08) : 1693 - 1702