Reverse Jensen Integral Inequalities for Operator Convex Functions in Terms of Frechet Derivative

被引:1
|
作者
Dragomir, S. Silvestru [1 ,2 ]
机构
[1] Victoria Univ, Sch Engn & Sci, Math, POB 14428, Melbourne, MC 8001, Australia
[2] Univ Witwatersrand, Sch Comp Sci & Appl Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
关键词
Unital C*-algebras; Selfadjoint elements; Functions of selfadjoint elements; Positive linear maps; Operator convex functions; Jensen's operator inequality; Integral inequalities;
D O I
10.1007/s41980-020-00482-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f:I -> R be an operator convex function of class C-1(I). If (A(t))(t is an element of T) is a bounded continuous field of selfadjoint operators in B(H) with spectra contained in I defined on a locally compact Hausdorff space T with a bounded Radon measure mu, such that integral(T)1d mu(t) = 1, then we obtain among others the following reverse of Jensen's inequality: 0 <= integral(T)f(A(t))d(mu)(t) - f(integral(T)A(s)d(mu)(s)) <= integral D-T(f)(A(t))d(mu)(t) - integral(T)Df(A(t))(integral(T)A(s)d(mu)(s))d mu(t) in terms of the Frechet derivativeDf(center dot)(center dot). Some applications for the Hermite-Hadamard inequalities are also given.
引用
收藏
页码:1969 / 1987
页数:19
相关论文
共 50 条
  • [41] JENSEN-TYPE INEQUALITIES FOR LOG-CONVEX FUNCTIONS
    Khodabakhshian, H.
    Goudarzi, N.
    Safshekan, R.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2023, 92 (02): : 113 - 123
  • [42] Jensen-type inequalities for m-convex functions
    Bosch, Paul
    Quintana, Yamilet
    Rodriguez, Jose M.
    Sigarreta, Jose M.
    OPEN MATHEMATICS, 2022, 20 (01): : 946 - 958
  • [43] JENSEN TYPE INEQUALITIES FOR (m,M,,Ψ)-CONVEX FUNCTIONS WITH APPLICATIONS
    Dragomir, Sever silvestru
    Bradanovic, Slavica ivelic
    Lovricevic, Neda
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2025, 28 (01): : 19 - 42
  • [44] An Operator Version of the Jensen Inequality for s-Convex Functions
    Nikoufar, Ismail
    Saeedi, Davuod
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (05)
  • [45] An Operator Version of the Jensen Inequality for s-Convex Functions
    Ismail Nikoufar
    Davuod Saeedi
    Complex Analysis and Operator Theory, 2021, 15
  • [46] NEW INTEGRAL INEQUALITIES OF HERMITE-HADAMARD TYPE FOR OPERATOR m-CONVEX AND (α, m)-CONVEX FUNCTIONS
    Wang, Shuhong
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (04) : 744 - 753
  • [47] Jensen-Mercer Operator Inequalities Involving Superquadratic Functions
    Anjidani, E.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (02)
  • [48] INTEGRAL INEQUALITIES FOR GENERALIZED CONCAVE OR CONVEX FUNCTIONS
    BORELL, C
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 43 (02) : 419 - 440
  • [49] On a new class of convex functions and integral inequalities
    Shanhe Wu
    Muhammad Uzair Awan
    Muhammad Aslam Noor
    Khalida Inayat Noor
    Sabah Iftikhar
    Journal of Inequalities and Applications, 2019
  • [50] Tempered Fractional Integral Inequalities for Convex Functions
    Rahman, Gauhar
    Nisar, Kottakkaran Sooppy
    Abdeljawad, Thabet
    MATHEMATICS, 2020, 8 (04)