Reverse Jensen Integral Inequalities for Operator Convex Functions in Terms of Frechet Derivative

被引:1
|
作者
Dragomir, S. Silvestru [1 ,2 ]
机构
[1] Victoria Univ, Sch Engn & Sci, Math, POB 14428, Melbourne, MC 8001, Australia
[2] Univ Witwatersrand, Sch Comp Sci & Appl Math, Private Bag 3, ZA-2050 Johannesburg, South Africa
关键词
Unital C*-algebras; Selfadjoint elements; Functions of selfadjoint elements; Positive linear maps; Operator convex functions; Jensen's operator inequality; Integral inequalities;
D O I
10.1007/s41980-020-00482-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f:I -> R be an operator convex function of class C-1(I). If (A(t))(t is an element of T) is a bounded continuous field of selfadjoint operators in B(H) with spectra contained in I defined on a locally compact Hausdorff space T with a bounded Radon measure mu, such that integral(T)1d mu(t) = 1, then we obtain among others the following reverse of Jensen's inequality: 0 <= integral(T)f(A(t))d(mu)(t) - f(integral(T)A(s)d(mu)(s)) <= integral D-T(f)(A(t))d(mu)(t) - integral(T)Df(A(t))(integral(T)A(s)d(mu)(s))d mu(t) in terms of the Frechet derivativeDf(center dot)(center dot). Some applications for the Hermite-Hadamard inequalities are also given.
引用
收藏
页码:1969 / 1987
页数:19
相关论文
共 50 条
  • [21] New inequalities for operator convex functions
    Vildan Bacak
    Ramazan Türkmen
    Journal of Inequalities and Applications, 2013 (1)
  • [22] On the Integral Representation and the Rasa, Jensen and Hermite-Hadamard Inequalities for Box-Convex Functions
    Komisarski, Andrzej
    Rajba, Teresa
    RESULTS IN MATHEMATICS, 2023, 78 (03)
  • [23] JENSEN-TYPE INEQUALITIES FOR A CLASS OF CONVEX FUNCTIONS
    Olanipekun, Peter Olamide
    Mogbademu, Adesanmi Alao
    Omotoyinbo, Opeyemi
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2016, 31 (03): : 655 - 666
  • [24] ON JENSEN-TYPE INEQUALITIES FOR HARMONIC CONVEX FUNCTIONS
    Bosch, Paul
    Rodriguez-Garcia, Jose M.
    Sigarreta, Jose M.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2024, 18 (04): : 1399 - 1413
  • [25] NEW INTEGRAL INEQUALITIES FOR s-CONVEX FUNCTIONS OF THE SECOND SENSE VIA THE CAPUTO FRACTIONAL DERIVATIVE AND THE CAPUTO-FABRIZIO INTEGRAL OPERATOR
    Kemali, Serap
    Tinaztepe, Gultekin
    Isik, Ilknur Yesilce
    Evcan, Sinem Sezer
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (04) : 1177 - 1188
  • [26] ON THE EQUALITY IN JENSEN INEQUALITY FOR OPERATOR CONVEX-FUNCTIONS
    PETZ, D
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1986, 9 (05) : 744 - 747
  • [27] GENERALIZED INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS
    Ozdemir, M. Emin
    Ekinci, Alper
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (04): : 1429 - 1439
  • [28] QUANTUM INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS
    Sudsutad, Weerawat
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (03): : 781 - 793
  • [29] SOME INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS
    Ozdemir, M. Emin
    Kavurmaci, Havva
    Avci, Merve
    TAMKANG JOURNAL OF MATHEMATICS, 2013, 44 (03): : 253 - 259
  • [30] CHARACTERIZATION OF OPERATOR CONVEX FUNCTIONS BY CERTAIN OPERATOR INEQUALITIES
    Osaka, Hiroyuki
    Tsurumi, Yukihiro
    Wada, Shuhei
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (02): : 565 - 575