ON THE LIMIT CYCLES FOR A CLASS OF GENERALIZED KUKLES DIFFERENTIAL SYSTEMS

被引:5
|
作者
Boulfoul, Amel [1 ,2 ]
Makhlouf, Amar [3 ]
Mellahi, Nawal [1 ]
机构
[1] 20 August 1955 Univ, Dept Math, BP26 El Hadaiek, Skikda 21000, Algeria
[2] 20 August 1955 Univ, LAMAHIS Lab, BP26 El Hadaiek, Skikda 21000, Algeria
[3] Badji Mokhtar Univ, LMA Lab, Dept Math, BP26 El Hadaiek, Annaba 23000, Algeria
来源
关键词
Limit cycle; averaging theory; Kukles systems; PERIODIC-SOLUTIONS; COEXISTENCE; NUMBER;
D O I
10.11948/2156-907X.20180083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the limit cycles of a class of polynomial differential systems of the form (x)over dot = -y, (y)over dot = x - f (x) - g(x)y - h(x)y(2) - l(x) y(3), where f (x) = epsilon f(1)(x) + epsilon(2) f(2) (x), g(x) = epsilon g(1)(x) + epsilon(2) g(2) (x), h(x) = epsilon h(1) (x) + epsilon(2)h(2)(x) and l(x) = epsilon l(1) (x) + epsilon(2)l(2) (x) where f(k)(x), g(k)(x), h(k )(x) and / l(k) (x) have degree n(1), n(2), n(3) and n(4), respectively for each k = 1,2, and epsilon is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of the linear center (x)over dot = -y, (y)over dot = x using the averaging theory of first and second order.
引用
收藏
页码:864 / 883
页数:20
相关论文
共 50 条
  • [41] Existence and Uniqueness of Limit Cycles in a Class of Planar Differential Systems
    Al-Dosary, Khalil I. T.
    JOURNAL OF APPLIED MATHEMATICS, 2011,
  • [42] THE SHAPE OF LIMIT CYCLES FOR A CLASS OF QUINTIC POLYNOMIAL DIFFERENTIAL SYSTEMS
    Wei, Xuemei
    Shui, Shuliang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2013, 3 (03): : 291 - 300
  • [43] On the number of limit cycles for a class of discontinuous quadratic differential systems
    Cen, Xiuli
    Li, Shimin
    Zhao, Yulin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (01) : 314 - 342
  • [44] Limit Cycles for the Class of D -Dimensional Polynomial Differential Systems
    Diab Z.
    Makhlouf A.
    Diab, Zouhair (diabzouhair@gmail.com), 1600, Hindawi Limited (2016):
  • [45] MAXIMUM NUMBER OF LIMIT CYCLES FOR GENERALIZED LIENARD POLYNOMIAL DIFFERENTIAL SYSTEMS
    Berbache, Aziza
    Bendjeddou, Ahmed
    Benadouane, Sabah
    MATHEMATICA BOHEMICA, 2021, 146 (02): : 151 - 165
  • [46] On the Number of Limit Cycles for Discontinuous Generalized Lienard Polynomial Differential Systems
    Jiang, Fangfang
    Shi, Junping
    Sun, Jitao
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (10):
  • [47] Limit cycles for a class of three-dimensional polynomial differential systems
    Llibre, Jaume
    Yu, Jiang
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2007, 13 (04) : 531 - 539
  • [48] BIFURCATION OF LIMIT CYCLES AND ISOCHRONOUS CENTER AT INFINITY FOR A CLASS OF DIFFERENTIAL SYSTEMS
    Huang, Wentao
    Liu, Yirong
    Zhang, Weinian
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2011, 1 (03): : 397 - 410
  • [49] Darboux integrability and algebraic limit cycles for a class of polynomial differential systems
    CAO JinLong
    LLIBRE Jaume
    ZHANG Xiang
    ScienceChina(Mathematics), 2014, 57 (04) : 775 - 794
  • [50] Limit Cycles for a Class of Continuous and Discontinuous Cubic Polynomial Differential Systems
    Llibre, Jaume
    Lopes, Bruno D.
    De Moraes, Jaime R.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2014, 13 (01) : 129 - 148