ON THE LIMIT CYCLES FOR A CLASS OF GENERALIZED KUKLES DIFFERENTIAL SYSTEMS

被引:5
|
作者
Boulfoul, Amel [1 ,2 ]
Makhlouf, Amar [3 ]
Mellahi, Nawal [1 ]
机构
[1] 20 August 1955 Univ, Dept Math, BP26 El Hadaiek, Skikda 21000, Algeria
[2] 20 August 1955 Univ, LAMAHIS Lab, BP26 El Hadaiek, Skikda 21000, Algeria
[3] Badji Mokhtar Univ, LMA Lab, Dept Math, BP26 El Hadaiek, Annaba 23000, Algeria
来源
关键词
Limit cycle; averaging theory; Kukles systems; PERIODIC-SOLUTIONS; COEXISTENCE; NUMBER;
D O I
10.11948/2156-907X.20180083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the limit cycles of a class of polynomial differential systems of the form (x)over dot = -y, (y)over dot = x - f (x) - g(x)y - h(x)y(2) - l(x) y(3), where f (x) = epsilon f(1)(x) + epsilon(2) f(2) (x), g(x) = epsilon g(1)(x) + epsilon(2) g(2) (x), h(x) = epsilon h(1) (x) + epsilon(2)h(2)(x) and l(x) = epsilon l(1) (x) + epsilon(2)l(2) (x) where f(k)(x), g(k)(x), h(k )(x) and / l(k) (x) have degree n(1), n(2), n(3) and n(4), respectively for each k = 1,2, and epsilon is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of the linear center (x)over dot = -y, (y)over dot = x using the averaging theory of first and second order.
引用
收藏
页码:864 / 883
页数:20
相关论文
共 50 条
  • [31] The limit cycles of a class of discontinuous piecewise differential systems
    Baymout, Louiza
    Benterki, Rebiha
    Llibre, Jaume
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2024, 13 (04)
  • [32] Nine Limit Cycles Around a Weak Focus in a Class of Three-Dimensional Cubic Kukles Systems
    Yuting Ouyang
    Dongping He
    Wentao Huang
    Qualitative Theory of Dynamical Systems, 2024, 23
  • [33] Nine Limit Cycles Around a Weak Focus in a Class of Three-Dimensional Cubic Kukles Systems
    Ouyang, Yuting
    He, Dongping
    Huang, Wentao
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (03)
  • [34] Integrability and limit cycles in cubic Kukles systems with a nilpotent singular point
    Li, Feng
    Li, Shimin
    NONLINEAR DYNAMICS, 2019, 96 (01) : 553 - 563
  • [35] Integrability and limit cycles in cubic Kukles systems with a nilpotent singular point
    Feng Li
    Shimin Li
    Nonlinear Dynamics, 2019, 96 : 553 - 563
  • [36] CENTRES AND LIMIT CYCLES FOR AN EXTENDED KUKLES SYSTEM
    Hill, Joe M.
    Lloyd, Noel G.
    Pearson, Jane M.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2007,
  • [37] LIMIT CYCLES OF THE GENERALIZED POLYNOMIAL LINARD DIFFERENTIAL SYSTEMS
    Amel Boulfoul
    Amar Makhlouf
    AnnalsofAppliedMathematics, 2016, 32 (03) : 221 - 233
  • [38] Bifurcations of limit cycles in Kukles systems of arbitrary degree with invariant ellipse
    Saez, Eduardo
    Szanto, Ivan
    APPLIED MATHEMATICS LETTERS, 2012, 25 (11) : 1695 - 1700
  • [39] ON THE LIMIT CYCLES OF A CLASS OF DISCONTINUOUS PIECEWISE LINEAR DIFFERENTIAL SYSTEMS
    Llibre, Jaume
    Menezes, Lucyjane de A. S.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (05): : 1835 - 1858
  • [40] Limit Cycles for a Class of Zp-Equivariant Differential Systems
    Gao, Jing
    Zhao, Yulin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (08):