Symplectic schemes and the shooting method for eigenvalues of the Schrodinger equation

被引:0
|
作者
Liu, XS [1 ]
Chi, YH [1 ]
Ding, PZ [1 ]
机构
[1] Jilin Univ, Inst Atom & Mol Phys, Changchun 130012, Peoples R China
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The one-dimensional time-independent Schrodinger equation is transformed into a Hamiltonian canonical equation by means of the Legendre transformation, then the symplectic schemes and a new shooting method extended to the eigenvalues of the Schrodinger equation. The method is applied to the calculations of one-dimensional harmonic oscillator, an anharmonic oscillator and the hydrogen atom. The numerical results are in good agreement with the exact ones.
引用
收藏
页码:1681 / 1684
页数:4
相关论文
共 50 条
  • [31] Computation of the eigenvalues of the one-dimensional Schrodinger equation by symplectic methods (vol 106, pg 795, 2006)
    Kalogiratou, Z
    Monovasilis, T
    Simos, TE
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2006, 106 (05) : 1283 - 1283
  • [32] SYMPLECTIC METHODS FOR THE NONLINEAR SCHRODINGER-EQUATION
    HERBST, BM
    VARADI, F
    ABLOWITZ, MJ
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1994, 37 (4-5) : 353 - 369
  • [33] Symplectic scheme for the Schrodinger equation with fractional Laplacian
    Xiao, Aiguo
    Wang, Junjie
    APPLIED NUMERICAL MATHEMATICS, 2019, 146 : 469 - 487
  • [34] Symplectic Euler Method for Nonlinear High Order Schrodinger Equation with a Trapped Term
    Fu, Fangfang
    Kong, Linghua
    Wang, Lan
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2009, 1 (05) : 699 - 710
  • [35] Explicit Symplectic Methods for the Nonlinear Schrodinger Equation
    Guan, Hua
    Jiao, Yandong
    Liu, Ju
    Tang, Yifa
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2009, 6 (03) : 639 - 654
  • [36] Symplectic integrators for the numerical solution of the Schrodinger equation
    Kalogiratou, Z
    Monovasilis, T
    Simos, TE
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 158 (01) : 83 - 92
  • [37] Symplectic methods for the numerical integration of the Schrodinger equation
    Monovasilis, Th.
    Simos, T. E.
    COMPUTATIONAL MATERIALS SCIENCE, 2007, 38 (03) : 526 - 532
  • [38] SYMPLECTIC INTEGRATORS FOR THE MULTICHANNEL SCHRODINGER-EQUATION
    MANOLOPOULOS, DE
    GRAY, SK
    JOURNAL OF CHEMICAL PHYSICS, 1995, 102 (23): : 9214 - 9227
  • [39] Numerical solution of a two-dimensional time-independent Schrodinger equation by using symplectic schemes
    Liu, XS
    Su, LW
    Liu, XY
    Ding, PZ
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2001, 83 (05) : 303 - 309
  • [40] Numerical solution of the two-dimensional time independent Schrodinger equation by third order symplectic schemes
    Monovasilis, T
    Simos, TE
    CHEMICAL PHYSICS, 2005, 313 (1-3) : 293 - 298