Symplectic schemes and the shooting method for eigenvalues of the Schrodinger equation

被引:0
|
作者
Liu, XS [1 ]
Chi, YH [1 ]
Ding, PZ [1 ]
机构
[1] Jilin Univ, Inst Atom & Mol Phys, Changchun 130012, Peoples R China
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The one-dimensional time-independent Schrodinger equation is transformed into a Hamiltonian canonical equation by means of the Legendre transformation, then the symplectic schemes and a new shooting method extended to the eigenvalues of the Schrodinger equation. The method is applied to the calculations of one-dimensional harmonic oscillator, an anharmonic oscillator and the hydrogen atom. The numerical results are in good agreement with the exact ones.
引用
收藏
页码:1681 / 1684
页数:4
相关论文
共 50 条
  • [11] ON SOLITONS AND EIGENVALUES OF SCHRODINGER EQUATION
    KARPMAN, VI
    SOKOLOV, VP
    SOVIET PHYSICS JETP-USSR, 1968, 27 (05): : 839 - +
  • [12] A NEW METHOD FOR COMPUTING EIGENVALUES OF THE RADIAL SCHRODINGER-EQUATION
    SIMOS, TE
    CHEMICAL PHYSICS LETTERS, 1995, 235 (3-4) : 321 - 326
  • [13] EIGENVALUES OF THE SCHRODINGER-EQUATION BY THE ALPHA-INTERPOLATION METHOD
    NAKAMURA, M
    HIRASAWA, M
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1983, 43 (06) : 1286 - 1293
  • [14] SHOOTING METHODS FOR THE SCHRODINGER-EQUATION
    KILLINGBECK, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (06): : 1411 - 1417
  • [15] ON NUMERICAL-SOLUTION OF THE SCHRODINGER-EQUATION - THE SHOOTING METHOD REVISITED
    INDJIN, D
    TODOROVIC, G
    MILANOVIC, V
    IKONIC, Z
    COMPUTER PHYSICS COMMUNICATIONS, 1995, 90 (01) : 87 - 94
  • [16] AN IMPROVED SHOOTING METHOD FOR ONE-DIMENSIONAL SCHRODINGER-EQUATION
    BLENSKI, T
    LIGOU, J
    COMPUTER PHYSICS COMMUNICATIONS, 1988, 50 (03) : 303 - 311
  • [17] Symplectic methods for the nonlinear Schrodinger equation
    Tang, YF
    Vazquez, L
    Zhang, F
    PerezGarcia, VM
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 32 (05) : 73 - 83
  • [18] A Galerkin Splitting Symplectic Method for the Two Dimensional Nonlinear Schrodinger Equation
    Mu, Zhenguo
    Li, Haochen
    Wang, Yushun
    Cai, Wenjun
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2018, 10 (05) : 1069 - 1089
  • [19] A New Multi-Symplectic Integration Method for the Nonlinear Schrodinger Equation
    Lv Zhong-Quan
    Wang Yu-Shun
    Song Yong-Zhong
    CHINESE PHYSICS LETTERS, 2013, 30 (03)
  • [20] Multi-symplectic splitting method for the coupled nonlinear Schrodinger equation
    Chen, Yaming
    Zhu, Huajun
    Song, Songhe
    COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (07) : 1231 - 1241