A numerical study of rock scratch tests using the particle-based numerical manifold method

被引:26
|
作者
Li, Xing [1 ,2 ]
Zhang, Qianbing [2 ]
Li, Jianchun [1 ]
Zhao, Jian [2 ]
机构
[1] Southeast Univ, Sch Civil Engn, Nanjing 211189, Jiangsu, Peoples R China
[2] Monash Univ, Dept Civil Engn, Clayton, Vic 3800, Australia
基金
中国国家自然科学基金;
关键词
Numerical manifold method; Rockcutting; Scratch; Ductile-brittle transition; Mechanical specific energy; FAILURE MODE TRANSITION; FRAGMENTATION PROCESS; TBM CUTTERS; SIMULATION; DEPTH; BITS;
D O I
10.1016/j.tust.2018.04.029
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A better understanding of the rock-tool interaction is necessary to improve the cutting efficiency. In this paper, we present a numerical study of rock scratching using a newly developed particle-based numerical manifold method (PNMM). The scratching processes with different cutting depths are first simulated, where the failure pattern and cutting force are discussed. The transition of brittle-ductile failure with an increased cutting depth is reproduced. It is validated that when the cutting depth is intermediate, rock scratching presents a transitional mode between ductile and brittle failure. Then, a parametric study is performed by a series of numerical simulations. The effect of cutter operational parameters on the cutting force and energy consumed by the cutter are studied. Three operational parameters of the cutter are considered in this study, including the cutting depth, cutting speed, and cutter rake angle. An estimation of the transitional cutting depth range is given by the result of the mechanical specific energy of the cutter. Besides, some advice is provided to improve the efficiency of rock cutting in engineering practice.
引用
收藏
页码:106 / 114
页数:9
相关论文
共 50 条
  • [31] Toppling failure simulation of rock slopes by numerical manifold method
    Zhang, Guo-Xin
    Zhao, Yan
    Shi, Gen-Hua
    Peng, Xiao-Chu
    Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, 2007, 29 (06): : 800 - 805
  • [32] SIMULATION OF TOPPLING FAILURE OF ROCK SLOPE BY NUMERICAL MANIFOLD METHOD
    Zhang, Guoxin
    Zhao, Yan
    Peng, Xiaochu
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2010, 7 (01) : 167 - 189
  • [33] Development of Numerical Manifold Method and its Application in Rock Engineering
    Ma, Guowei
    He, Lei
    An, Xinmei
    ANALYSIS OF DISCONTINUOUS DEFORMATION: NEW DEVELOPMENTS AND APPLICATIONS, 2010, : 47 - 58
  • [34] The phase field numerical manifold method for crack propagation in rock
    Yang Liang
    Yang Yong-tao
    Zheng Hong
    ROCK AND SOIL MECHANICS, 2021, 42 (12) : 3419 - 3427
  • [35] Study of inner scale ratio of rock and soil material based on numerical tests of particle flow code
    Yin Xiao-tao
    Zheng Ya-na
    Ma Shuang-ke
    ROCK AND SOIL MECHANICS, 2011, 32 (04) : 1211 - 1215
  • [36] Modeling rock failure using the numerical manifold method followed by the discontinuous deformation analysis
    Ning, You-Jun
    An, Xin-Mei
    Lu, Qing
    Ma, Guo-Wei
    ACTA MECHANICA SINICA, 2012, 28 (03) : 760 - 773
  • [37] Modeling rock failure using the numerical manifold method followed by the discontinuous deformation analysis
    You-Jun Ning
    Xin-Mei An
    Qing Lü
    Guo-Wei Ma
    Acta Mechanica Sinica, 2012, 28 : 760 - 773
  • [38] Stability analysis of soil-rock-mixture slopes using the numerical manifold method
    Yang, Yongtao
    Sun, Guanhua
    Zheng, Hong
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2019, 109 : 153 - 160
  • [39] Elasto-plastic analysis of jointed rock masses using the numerical manifold method
    Jiao, J.
    Qiao, C. S.
    BOUNDARIES OF ROCK MECHANICS: RECENT ADVANCES AND CHALLENGES FOR THE 21ST CENTURY, 2008, : 83 - 88
  • [40] A stability analysis of rock slopes using a nonlinear strength reduction numerical manifold method
    Wang, Haibin
    Yang, Yongtao
    Sun, Guanhua
    Zheng, Hong
    COMPUTERS AND GEOTECHNICS, 2021, 129