A numerical study of rock scratch tests using the particle-based numerical manifold method

被引:26
|
作者
Li, Xing [1 ,2 ]
Zhang, Qianbing [2 ]
Li, Jianchun [1 ]
Zhao, Jian [2 ]
机构
[1] Southeast Univ, Sch Civil Engn, Nanjing 211189, Jiangsu, Peoples R China
[2] Monash Univ, Dept Civil Engn, Clayton, Vic 3800, Australia
基金
中国国家自然科学基金;
关键词
Numerical manifold method; Rockcutting; Scratch; Ductile-brittle transition; Mechanical specific energy; FAILURE MODE TRANSITION; FRAGMENTATION PROCESS; TBM CUTTERS; SIMULATION; DEPTH; BITS;
D O I
10.1016/j.tust.2018.04.029
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A better understanding of the rock-tool interaction is necessary to improve the cutting efficiency. In this paper, we present a numerical study of rock scratching using a newly developed particle-based numerical manifold method (PNMM). The scratching processes with different cutting depths are first simulated, where the failure pattern and cutting force are discussed. The transition of brittle-ductile failure with an increased cutting depth is reproduced. It is validated that when the cutting depth is intermediate, rock scratching presents a transitional mode between ductile and brittle failure. Then, a parametric study is performed by a series of numerical simulations. The effect of cutter operational parameters on the cutting force and energy consumed by the cutter are studied. Three operational parameters of the cutter are considered in this study, including the cutting depth, cutting speed, and cutter rake angle. An estimation of the transitional cutting depth range is given by the result of the mechanical specific energy of the cutter. Besides, some advice is provided to improve the efficiency of rock cutting in engineering practice.
引用
收藏
页码:106 / 114
页数:9
相关论文
共 50 条
  • [21] Numerical simulation of rock fracture under dynamic loading using Manifold Method
    Chen, Pengwan
    Huang, Tao
    Yang, Jun
    Zhang, Guoxin
    FRACTURE AND DAMAGE MECHANICS V, PTS 1 AND 2, 2006, 324-325 : 235 - +
  • [22] Evaluation of permeability of soil & rock aggregate using meshless numerical manifold method
    Lin, Shan
    Zheng, Hong
    Zhang, Zhihong
    Li, Wei
    COMPUTERS AND GEOTECHNICS, 2022, 151
  • [23] Simulation of the fracture of heterogeneous rock masses based on the enriched numerical manifold method
    Wang, Yuan
    Liu, Xinyu
    Zhou, Lingfeng
    Dong, Qi
    GEOMECHANICS AND ENGINEERING, 2023, 34 (06) : 683 - 696
  • [24] A study on rock mass crack propagation and coalescence simulation based on improved numerical manifold method (NMM)
    Zhang, Zishan
    Wang, Shuhong
    Wang, Cungen
    Wang, Pengyu
    GEOMECHANICS AND GEOPHYSICS FOR GEO-ENERGY AND GEO-RESOURCES, 2021, 7 (01)
  • [25] A study on rock mass crack propagation and coalescence simulation based on improved numerical manifold method (NMM)
    Zishan Zhang
    Shuhong Wang
    Cungen Wang
    Pengyu Wang
    Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7
  • [26] Numerical particle-based analysis of the effects responsible for acoustic particle agglomeration
    Markauskas, D.
    Kacianauskas, R.
    Maknickas, A.
    ADVANCED POWDER TECHNOLOGY, 2015, 26 (03) : 698 - 704
  • [27] Study on numerical manifold method based on finite deformation theory
    Wei, Wei
    Jiang, Qinghui
    Zhou, Chuangbing
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2014, 46 (01): : 78 - 86
  • [28] Study of contact cracks based on improved numerical manifold method
    Yang Shi-kou
    Zhang Ji-xun
    Ren Xu-hua
    ROCK AND SOIL MECHANICS, 2019, 40 (05) : 2016 - 2021
  • [29] Numerical manifold method of nonlinear analysis for rock and soil mass
    Zhou, Xiao-Yi
    Deng, An-Fu
    Yantu Gongcheng Xuebao/Chinese Journal of Geotechnical Engineering, 2009, 31 (02): : 298 - 302
  • [30] Study of Artificial Boundary Problems based on Numerical Manifold Method
    Yang, Li
    Hong, Zheng
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL SYMPOSIUM ON ADVANCES IN ELECTRICAL, ELECTRONICS AND COMPUTER ENGINEERING (ISAEECE 2017), 2017, 124 : 40 - 44