Comparison of Advanced Transport Models for Nanoscale nMOSFETs

被引:1
|
作者
Palestri, P. [1 ]
Alexander, C. [2 ]
Asenov, A. [2 ]
Baccarani, G. [3 ]
Bournel, A. [4 ]
Braccioli, M. [3 ]
Cheng, B. [2 ]
Dollfus, P. [4 ]
Esposito, A. [5 ]
Esseni, D. [1 ]
Ghetti, A. [6 ]
Fiegna, C. [3 ]
Fiori, G. [4 ]
Aubry-Fortuna, V. [4 ]
Iannaccone, G. [4 ]
Martinez, A. [2 ]
Majkusiak, B. [7 ]
Monfray, S. [8 ]
Reggiani, S. [3 ]
Riddet, C. [2 ]
Saint-Martin, J. [4 ]
Sangiorgi, E. [3 ]
Schenk, A. [5 ]
Selmi, L. [1 ]
Silvestri, L. [3 ]
Walczak, J. [7 ,9 ]
机构
[1] Univ Udine, IUNET, DIEGM, Via Sci 208, I-33100 Udine, Italy
[2] Univ Glasgow, Glasgow, Lanark, Scotland
[3] Univ Bologna, IUNET, ARCES, Bologna, Italy
[4] Univ Paris, IEF, CNRS, Orsay, France
[5] ETH, CH-8092 Zurich, Switzerland
[6] R & D Technol Dev, Numonyx, I-20041 Agrate Brianza, Italy
[7] Warsaw Univ Technol, Warsaw, Poland
[8] ST Microelect, Crolles, France
[9] Univ Pisa, IUNET, Pisa, Italy
关键词
MONTE-CARLO; MOBILITY MODEL; ELECTRON; MOSFETS; PERFORMANCE; SIMULATION; SOI;
D O I
10.1109/ULIS.2009.4897554
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper we mutually compare advanced modeling approaches for the determination of the drain current in nanoscale MOSFETs. Transport models range from Drift-Diffusion to direct solution of the Boltzmann Transport equation with the Monte-Carlo methods. Template devices representative of 22mn Double-Gate and 32mn FDSOI transistors were used as a common benchmark to highlight the differences between the quantitative predictions of different approaches. Our results set a benchmark to assess modeling tools for nanometric MOSFETs.
引用
收藏
页码:125 / +
页数:2
相关论文
共 50 条
  • [21] Design and optimization of complex nanoscale electron devices by simulations with quantum transport models
    Höntschel, J.
    Klix, W.
    Stenzel, R.
    VDI Berichte, 2003, (1803): : 93 - 97
  • [22] Design and optimization of complex nanoscale electron devices by simulations with quantum transport models
    Höntschel, J
    Klix, W
    Stenzel, R
    NANOFAIR 2003: NEW IDEAS FOR INDUSTRY, 2003, 1803 : 93 - 97
  • [23] Failure of moments-based transport models in nanoscale devices near equilibrium
    Jungemann, C
    Grasser, T
    Neinhüus, B
    Meinerzhagen, B
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2005, 52 (11) : 2404 - 2408
  • [24] A comparison of nanoscale measurements with the theoretical models of real and nominal contact areas
    Xu, Yang
    Jackson, Robert L.
    Chen, Yan
    Zhang, Anqi
    Prorok, Barton C.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY, 2020, 234 (11) : 1735 - 1745
  • [25] A New Method for Accurate Extraction of Source Resistance and Effective Mobility in Nanoscale Multifinger nMOSFETs
    Guo, Jyh-Chyurn
    Lo, Yi-Zen
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (09) : 3004 - 3011
  • [26] Three-dimensional simulations of quantum confinement and random dopants effects in nanoscale nMOSFETs
    Fiori, G.
    Di Pascoli, S.
    Iannaccone, G.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2008, 5 (06) : 1115 - 1119
  • [27] Nanoscale heat transport
    Institute of Physics, Silesian University of Technology, ul. Krzywoustego 2, 44-100 Gliwice, Poland
    Mater. Sci., 2008, 1 (95-103):
  • [28] Nanoscale thermal transport
    Cahill, DG
    Ford, WK
    Goodson, KE
    Mahan, GD
    Majumdar, A
    Maris, HJ
    Merlin, R
    Phillpot, SR
    JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) : 793 - 818
  • [29] Nanoscale heat transport
    Bodzenta, J.
    MATERIALS SCIENCE-POLAND, 2008, 26 (01): : 95 - 103
  • [30] Nanoscale thermal transport
    Cahill, D.G. (d-cahill@uiuc.edu), 1600, American Institute of Physics Inc. (93):