Group classification of the time-fractional Kaup-Kupershmidt equation

被引:20
|
作者
Jafari, H. [1 ,2 ]
Kadkhoda, N. [3 ]
Azadi, M. [1 ]
Yaghoubi, M. [4 ]
机构
[1] Univ Mazandaran, Dept Math & Comp Sci, Babol Sar, Iran
[2] Univ South Africa, Dept Math Sci, ZA-0003 Unisa, South Africa
[3] Bozorgmehr Univ Qaenat, Fac Basic Sci, Dept Math, Qaenat, Iran
[4] Payame Noor Univ, Dept Math, POB 19395-3697, Tehran, Iran
关键词
Fractional differential equation; Lie group; Time-fractional Kaup-Kupershmidt equation; Rieman-Liouville derivative; Group-invariant solutions; LIE GROUP; DERIVATIVES;
D O I
10.24200/sci.2017.4034
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Finding the symmetries of the nonlinear fractional differential equations plays an important role in study of fractional differential equations. In this manuscript, firstly, we are interested in finding the Lie point symmetries of the time-fractional Kaup-Kupershmidt equation. Afterwards, by using the infinitesimal generators, we determine their corresponding invariant solutions. (C) 2017 Sharif University of Technology. All rights reserved.
引用
收藏
页码:302 / 307
页数:6
相关论文
共 50 条
  • [31] Nonlinear superposition formula for the Kaup-Kupershmidt partial differential equation
    Musette, M
    Verhoeven, C
    PHYSICA D, 2000, 144 (1-2): : 211 - 220
  • [32] Rational solutions of the (2+1)-dimensional Kaup-Kupershmidt equation
    Chen, Junchao
    Hu, Xueli
    Zhu, Shundong
    APPLIED MATHEMATICS LETTERS, 2019, 95 : 150 - 157
  • [33] EXACT SOLUTIONS OF KUPERSHMIDT EQUATION, APPROXIMATE SOLUTIONS FOR TIME-FRACTIONAL KUPERSHMIDT EQUATION: A COMPARISON STUDY
    Djilali, Medjahed
    Hakem, Ali
    Benali, Abdelkader
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2020, 18 (03): : 493 - 512
  • [34] INVARIANCE OF THE KAUP-KUPERSHMIDT EQUATION AND TRIANGULAR AUTO-BACKLUND TRANSFORMATIONS
    Euler, Marianna
    Euler, Norbert
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2012, 19 (03) : 285 - 291
  • [35] Exact Solutions to (2+1)-Dimensional Kaup-Kupershmidt Equation
    LU Hai-Ling~+ and LIU Xi-QiangSchool of Mathematical Sciences
    Communications in Theoretical Physics, 2009, 52 (11) : 795 - 800
  • [36] Novel analysis of nonlinear seventh-order fractional Kaup-Kupershmidt equation via the Caputo operator
    Ganie, Abdul Hamid
    Mallik, Saurav
    Albaidani, Mashael M.
    Khan, Adnan
    Shah, Mohd Asif
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [37] Residual Symmetry Reduction and Consistent Riccati Expansion of the Generalized Kaup-Kupershmidt Equation
    刘希忠
    俞军
    楼智美
    曹巧君
    CommunicationsinTheoreticalPhysics, 2018, 69 (06) : 625 - 630
  • [38] Bilinear form and soliton solutions for the fifth-order Kaup-Kupershmidt equation
    Wang, Pan
    MODERN PHYSICS LETTERS B, 2017, 31 (06):
  • [39] On numerical soliton solution of the Kaup-Kupershmidt equation and convergence analysis of the decomposition method
    Inc, M
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (01) : 72 - 85
  • [40] Solution of generalised fuzzy fractional Kaup-Kupershmidt equation using a robust multi parametric approach and a novel transform
    Sartanpara, Parthkumar P.
    Meher, Ramakanta
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 205 : 939 - 969