Group classification of the time-fractional Kaup-Kupershmidt equation

被引:20
|
作者
Jafari, H. [1 ,2 ]
Kadkhoda, N. [3 ]
Azadi, M. [1 ]
Yaghoubi, M. [4 ]
机构
[1] Univ Mazandaran, Dept Math & Comp Sci, Babol Sar, Iran
[2] Univ South Africa, Dept Math Sci, ZA-0003 Unisa, South Africa
[3] Bozorgmehr Univ Qaenat, Fac Basic Sci, Dept Math, Qaenat, Iran
[4] Payame Noor Univ, Dept Math, POB 19395-3697, Tehran, Iran
关键词
Fractional differential equation; Lie group; Time-fractional Kaup-Kupershmidt equation; Rieman-Liouville derivative; Group-invariant solutions; LIE GROUP; DERIVATIVES;
D O I
10.24200/sci.2017.4034
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Finding the symmetries of the nonlinear fractional differential equations plays an important role in study of fractional differential equations. In this manuscript, firstly, we are interested in finding the Lie point symmetries of the time-fractional Kaup-Kupershmidt equation. Afterwards, by using the infinitesimal generators, we determine their corresponding invariant solutions. (C) 2017 Sharif University of Technology. All rights reserved.
引用
收藏
页码:302 / 307
页数:6
相关论文
共 50 条
  • [21] New exact solutions for time-fractional Kaup-Kupershmidt equation using improved (G′/G)-expansion and extended (G′/G)-expansion methods
    Sahoo, S.
    Ray, S. Saha
    Abdou, M. A.
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) : 3105 - 3110
  • [22] A bidirectional Kaup-Kupershmidt equation and directionally dependent solitons
    Dye, JM
    Parker, A
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (10) : 4921 - 4949
  • [23] A Comparative Analysis of Fractional-Order Kaup-Kupershmidt Equation within Different Operators
    Shah, Nehad Ali
    Hamed, Yasser S.
    Abualnaja, Khadijah M.
    Chung, Jae-Dong
    Shah, Rasool
    Khan, Adnan
    SYMMETRY-BASEL, 2022, 14 (05):
  • [24] Darboux transformation and explicit solutions for the Kaup-Kupershmidt equation
    Liu, Tongshuai
    Xia, Tiecheng
    PHYSICA SCRIPTA, 2023, 98 (10)
  • [25] Local Solvability of Cauchy Problem for Kaup-Kupershmidt Equation
    Xiang Qing ZHAO Shen Ming GU School of MathematicsPhysics and Information ScienceZhejiang Ocean UniversityZhejiang PRChina
    数学研究与评论, 2010, 30 (03) : 543 - 551
  • [26] A nonlinear superposition formula for the Kaup-Kupershmidt partial differential equation
    Musette, M
    Verhoeven, C
    PROCEEDINGS OF THE WORKSHOP ON NONLINEARITY, INTEGRABILITY AND ALL THAT: TWENTY YEARS AFTER NEEDS '79, 2000, : 182 - 188
  • [27] ILL-POSEDNESS OF MODIFIED KAWAHARA EQUATION AND KAUP-KUPERSHMIDT EQUATION
    闫威
    李用声
    ActaMathematicaScientia, 2012, 32 (02) : 710 - 716
  • [28] ILL-POSEDNESS OF MODIFIED KAWAHARA EQUATION AND KAUP-KUPERSHMIDT EQUATION
    Yan Wei
    Li Yongsheng
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (02) : 710 - 716
  • [29] Explicit solutions to the Kaup-Kupershmidt equation via nonlocal symmetries
    Reyes, Enrique G.
    Sanchez, Guillermo
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (08): : 2749 - 2763
  • [30] Soliton solutions for the fifth-order Kaup-Kupershmidt equation
    Wang, Pan
    Xiao, Shu-Hong
    PHYSICA SCRIPTA, 2018, 93 (10)