Uncertainty quantification for plant disease detection using Bayesian deep learning

被引:72
|
作者
Hernandez, S. [1 ,2 ]
Lopez, Juan L. [2 ]
机构
[1] Univ Catolica Maule, Lab Procesamiento Informac Geoespacial, Maule, Chile
[2] Univ Catolica Maule, Ctr Innovac Ingn Aplicada, Maule, Chile
关键词
Bayesian deep learning; Plant disease detection; Deep learning; SEVERITY; PATTERN;
D O I
10.1016/j.asoc.2020.106597
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Climate change is having an enormous impact on crop production in Latin America and the Caribbean. This problem not only concerns the volume of crop production but also the quality and safety of the food industry. Several research studies have proposed deep learning for plant disease detection. However, there is little information about the confidence of the prediction on unseen samples. Therefore, uncertainty in models of plant disease detection is required for effective crop management. In particular, uncertainty arising from sample selection bias makes it difficult to scale automatic plant disease detection systems to production. In this paper, we develop a probabilistic programming approach for plant disease detection using state-of-the-art Bayesian deep learning techniques and the uncertainty as a misclassification measurement. The results show that Bayesian inference achieves classification performance that is comparable to the standard optimization procedures for fine-tuning deep learning models. At the same time, the proposed method approximates the posterior density for the plant disease detection problem and quantify the uncertainty of the predictions for out-of-sample instances. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Uncertainty Quantification for Sparse Deep Learning
    Wang, Yuexi
    Rockova, Veronika
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108
  • [32] Plant Disease Detection and Classification by Deep Learning
    Saleem, Muhammad Hammad
    Potgieter, Johan
    Arif, Khalid Mahmood
    PLANTS-BASEL, 2019, 8 (11):
  • [33] Automatic Quantification of Plant Disease from Field Image Data Using Deep Learning
    Garg, Kanish
    Bhugra, Swati
    Lall, Brejesh
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 1964 - 1971
  • [34] A comprehensive review on detection of plant disease using machine learning and deep learning approaches
    Jackulin C.
    Murugavalli S.
    Measurement: Sensors, 2022, 24
  • [35] Real-Time Plant Disease Dataset Development and Detection of Plant Disease Using Deep Learning
    Joseph, Diana Susan
    Pawar, Pranav M.
    Chakradeo, Kaustubh
    IEEE ACCESS, 2024, 12 : 16310 - 16333
  • [36] Uncertainty quantification in super-resolution guided wave array imaging using a variational Bayesian deep learning approach
    Song, Homin
    Yang, Yongchao
    NDT & E INTERNATIONAL, 2023, 133
  • [37] Uncertainty quantification in skin cancer classification using three-way decision-based Bayesian deep learning
    Abdar, Moloud
    Samami, Maryam
    Mahmoodabad, Sajjad Dehghani
    Doan, Thang
    Mazoure, Bogdan
    Hashemifesharaki, Reza
    Liu, Li
    Khosravi, Abbas
    Acharya, U. Rajendra
    Makarenkov, Vladimir
    Nahavandi, Saeid
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 135
  • [38] Machine Learning and Deep Learning for Plant Disease Classification and Detection
    Balafas, Vasileios
    Karantoumanis, Emmanouil
    Louta, Malamati
    Ploskas, Nikolaos
    IEEE ACCESS, 2023, 11 : 114352 - 114377
  • [39] Bayesian Learning for Uncertainty Quantification, Optimization, and Inverse Design
    Swaminathan, Madhavan
    Bhatti, Osama Waqar
    Guo, Yiliang
    Huang, Eric
    Akinwande, Oluwaseyi
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2022, 70 (11) : 4620 - 4634
  • [40] A Bayesian deep learning pipeline for lithium-ion battery SOH estimation with uncertainty quantification
    Ke, Yuqi
    Long, Mingzhu
    Yang, Fangfang
    Peng, Weiwen
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2024, 40 (01) : 406 - 427