Uncertainty quantification for plant disease detection using Bayesian deep learning

被引:72
|
作者
Hernandez, S. [1 ,2 ]
Lopez, Juan L. [2 ]
机构
[1] Univ Catolica Maule, Lab Procesamiento Informac Geoespacial, Maule, Chile
[2] Univ Catolica Maule, Ctr Innovac Ingn Aplicada, Maule, Chile
关键词
Bayesian deep learning; Plant disease detection; Deep learning; SEVERITY; PATTERN;
D O I
10.1016/j.asoc.2020.106597
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Climate change is having an enormous impact on crop production in Latin America and the Caribbean. This problem not only concerns the volume of crop production but also the quality and safety of the food industry. Several research studies have proposed deep learning for plant disease detection. However, there is little information about the confidence of the prediction on unseen samples. Therefore, uncertainty in models of plant disease detection is required for effective crop management. In particular, uncertainty arising from sample selection bias makes it difficult to scale automatic plant disease detection systems to production. In this paper, we develop a probabilistic programming approach for plant disease detection using state-of-the-art Bayesian deep learning techniques and the uncertainty as a misclassification measurement. The results show that Bayesian inference achieves classification performance that is comparable to the standard optimization procedures for fine-tuning deep learning models. At the same time, the proposed method approximates the posterior density for the plant disease detection problem and quantify the uncertainty of the predictions for out-of-sample instances. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Plant Disease Detection Using Deep Learning: A Proof of Concept on Pear Leaf Disease Detection
    Fenu, Gianni
    Malloci, Francesca Maridina
    Onorato, Marcello
    Gerardi, Marco Secondo
    Scano, Angela
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2023, PT III, 2025, 2135 : 271 - 279
  • [22] Plant disease detection using deep learning based Mobile application
    Tembhurne, Jitendra V.
    Gajbhiye, Saurav M.
    Gannarpwar, Vedant R.
    Khandait, Harshal R.
    Goydani, Purva R.
    Diwan, Tausif
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (18) : 27365 - 27390
  • [23] Plant disease detection using deep learning based Mobile application
    Jitendra V. Tembhurne
    Saurav M. Gajbhiye
    Vedant R. Gannarpwar
    Harshal R. Khandait
    Purva R. Goydani
    Tausif Diwan
    Multimedia Tools and Applications, 2023, 82 : 27365 - 27390
  • [24] Using Deep Learning for Image-Based Plant Disease Detection
    Mohanty, Sharada P.
    Hughes, David P.
    Salathe, Marcel
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [25] Detection of plant leaf disease using advanced deep learning architectures
    Sharma R.
    Mittal M.
    Gupta V.
    Vasdev D.
    International Journal of Information Technology, 2024, 16 (6) : 3475 - 3492
  • [26] A Hybrid Bayesian Deep Learning Model for Remaining Useful Life Prognostics and Uncertainty Quantification
    Huang, Dengshan
    Bai, Rui
    Zhao, Shuai
    Wen, Pengfei
    He, Jiawei
    Wang, Shengyue
    Chen, Shaowei
    2021 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2021,
  • [27] Plant Disease Detection using Deep Learning on Natural Environment Images
    De Silva, Malithi
    Brown, Dane
    5TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, BIG DATA, COMPUTING AND DATA COMMUNICATION SYSTEMS (ICABCD2022), 2022,
  • [28] Potato Plant Leaf Disease Detection Using Deep Learning Method
    Sofuoglu, Cemal Ihsan
    Birant, Derya
    JOURNAL OF AGRICULTURAL SCIENCES-TARIM BILIMLERI DERGISI, 2024, 30 (01): : 153 - 165
  • [29] Click-through Rate Prediction and Uncertainty Quantification Based on Bayesian Deep Learning
    Wang, Xiaowei
    Dong, Hongbin
    ENTROPY, 2023, 25 (03)
  • [30] Plant leaf disease classification using deep Convolutional neural network with Bayesian learning
    Sachdeva, Guneet
    Singh, Preeti
    Kaur, Pardeep
    MATERIALS TODAY-PROCEEDINGS, 2021, 45 : 5584 - 5590