The reduction of chromium (VI) phytotoxicity and phytoavailability to wheat (Triticum aestivum L.) using biochar and bacteria

被引:89
|
作者
Arshad, Maryem [1 ]
Khan, Aqib Hassan Ali [1 ]
Hussain, Imran [2 ,3 ]
Badar-uz-Zaman [4 ]
Anees, Mariam [5 ]
Iqbal, Mazhar [1 ]
Soja, Gerhard [2 ]
Linde, Celeste [6 ]
Yousaf, Sohail [1 ,6 ]
机构
[1] Quaid I Azam Univ, Fac Biol Sci, Dept Environm Sci, Islamabad 45320, Pakistan
[2] AIT Austrian Inst Technol GmbH, Environm Resources & Technol, Konrad Lorenz Str 24, A-3430 Tulln, Austria
[3] Univ Vienna, Dept Ecogen & Syst Biol, Althanstr 14, A-1090 Vienna, Austria
[4] Natl Agr Res Ctr, Land Resources Res Inst, Islamabad 44000, Pakistan
[5] Quaid I Azam Univ, Fac Biol Sci, Dept Biochem, Islamabad 45320, Pakistan
[6] Australian Natl Univ, Res Sch Biol, Ecol & Evolut, Canberra, ACT 2601, Australia
关键词
Chromium; Bacteria; Wheat; Phytotoxicity; Biochar; Phytoavailability; HEXAVALENT CHROMIUM; OXIDATIVE STRESS; MINERAL-NUTRITION; HEAVY-METALS; RICE HUSK; SOIL; REMOVAL; GROWTH; BIOAVAILABILITY; MECHANISMS;
D O I
10.1016/j.apsoil.2017.02.021
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Chromium (Cr) is considered a serious environmental pollutant due to its wide industrial use. Toxicity of Cr to plants depends on its valence state. Cr(VI) is highly toxic and mobile whereas Cr(III) is less toxic. Cr accumulation in plants causes high toxicity in terms of alterations in the germination process, reduction in the growth of roots, stems, and leaves, which may affect total dry matter production and yield. We performed a pot experiment to investigate chromium (50 mg kg(-1)) induced phytotoxicity in wheat (Triticum aestivum L.) and to reduce its phytoavailability by amending the contaminated soil with chromium reducing bacteria (CRB) and 1% or 5% biochar. For the phytotoxicity assay, wheat was grown at different concentrations of chromium (10, 20, 30, 40 and 50 mg L-1). After 3 weeks a subsequent reduction in root and shoot length, fresh and dry biomass, percentage germination, total chlorophyll, and carbohydrates was observed. Our results showed reduction in phytotoxic effects of Cr(VI) mainly due to a reduction of toxic Cr(VI) to Cr(III). Highest reductive transformation of Cr(VI) to Cr(III) was observed in T9 (5% biochar with bacterial consortia) in all three matrices i.e. soil (99%), root (98%) and shoots (97%). The highest (90%) Cr retention within soil was also observed in T9 with the addition of 5% biochar and bacterial consortia. Of the remaining 10% Cr retention (entering into the plant), 3 mg kg(-1) and 1.3 mg kg(-1) was found in roots and shoots (on dry weight basis), respectively. Soil inoculation with consortia showed 33% higher stabilization than individual strain application. Soil amendment with biochar and bacteria showed an improvement in plant height, biomass production, seed germination, chlorophyll, protein, and carbohydrate content (p < 0.05). Findings of this study may help to reduce food chain availability of potentially toxic Cr by employing cost-effective bioremediation amendments. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:90 / 98
页数:9
相关论文
共 50 条
  • [31] STABILITY OF YIELD COMPONENTS IN WHEAT (Triticum aestivum L.)
    Dimitrijevic, Miodrag
    Knezevic, Desimir
    Petrovic, Sofija
    Zecevic, Veselinka
    Boskovic, Jelena
    Belic, Milivoj
    Pejic, Borivoj
    Banjac, Borislav
    GENETIKA-BELGRADE, 2011, 43 (01): : 29 - 39
  • [32] Resistance to Rusts in Bangladeshi Wheat (Triticum aestivum L.)
    Malaker, P. K.
    Reza, M. M. A.
    CZECH JOURNAL OF GENETICS AND PLANT BREEDING, 2011, 47 : S155 - S159
  • [33] The endophytic fungi from wheat (Triticum aestivum L.)
    Silvina Larran
    Analía Perelló
    María Rosa Simón
    Virginia Moreno
    World Journal of Microbiology and Biotechnology, 2007, 23 : 565 - 572
  • [34] Hybrid vigor in common wheat (Triticum aestivum L.)
    Ekmeklik bugdayda
    1600, (Scientific and Technical Research Council of Turkey, Ankara, Turkey):
  • [35] HERITABILITY OF WATERLOGGING TOLERANCE IN WHEAT (Triticum aestivum L.)
    Unay, Aydin
    Simsek, Serap
    TURKISH JOURNAL OF FIELD CROPS, 2020, 25 (02) : 156 - 160
  • [36] EFFICIENCY OF THE BIOSTIMULANT IN WINTER WHEAT (TRITICUM AESTIVUM L.)
    Turaeva, S.
    Kurbanova, E.
    Mamarozikov, U.
    Nurmakhmadova, P.
    Khidirova, N.
    Juraev, D.
    Shoymuradov, A.
    Bakhramova, N.
    Aynakulova, Z.
    SABRAO JOURNAL OF BREEDING AND GENETICS, 2024, 56 (05): : 1982 - 1993
  • [37] Gametoclonal variation in Egyptian wheat (Triticum aestivum L.)
    Ahmed, Kasem Zaki
    Ata, A-T. M.
    Osman, S. A-M.
    A-El Nagy, M. A.
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2018, 54 : S86 - S87
  • [38] Aqueous silicate complexes in wheat, Triticum aestivum L.
    Casey, WH
    Kinrade, SD
    Knight, CTG
    Rains, DW
    Epstein, E
    PLANT CELL AND ENVIRONMENT, 2004, 27 (01): : 51 - 54
  • [39] Effects of chromium toxicity on leaf photosynthetic characteristics and oxidative changes in wheat (Triticum aestivum L.)
    Subrahmanyam, D.
    PHOTOSYNTHETICA, 2008, 46 (03) : 339 - 345
  • [40] Agronomic biofortification of zinc in wheat (Triticum aestivum L.)
    Kumar, Arvind
    Denre, Manas
    Prasad, Ruplal
    CURRENT SCIENCE, 2018, 115 (05): : 944 - 948