The reduction of chromium (VI) phytotoxicity and phytoavailability to wheat (Triticum aestivum L.) using biochar and bacteria

被引:89
|
作者
Arshad, Maryem [1 ]
Khan, Aqib Hassan Ali [1 ]
Hussain, Imran [2 ,3 ]
Badar-uz-Zaman [4 ]
Anees, Mariam [5 ]
Iqbal, Mazhar [1 ]
Soja, Gerhard [2 ]
Linde, Celeste [6 ]
Yousaf, Sohail [1 ,6 ]
机构
[1] Quaid I Azam Univ, Fac Biol Sci, Dept Environm Sci, Islamabad 45320, Pakistan
[2] AIT Austrian Inst Technol GmbH, Environm Resources & Technol, Konrad Lorenz Str 24, A-3430 Tulln, Austria
[3] Univ Vienna, Dept Ecogen & Syst Biol, Althanstr 14, A-1090 Vienna, Austria
[4] Natl Agr Res Ctr, Land Resources Res Inst, Islamabad 44000, Pakistan
[5] Quaid I Azam Univ, Fac Biol Sci, Dept Biochem, Islamabad 45320, Pakistan
[6] Australian Natl Univ, Res Sch Biol, Ecol & Evolut, Canberra, ACT 2601, Australia
关键词
Chromium; Bacteria; Wheat; Phytotoxicity; Biochar; Phytoavailability; HEXAVALENT CHROMIUM; OXIDATIVE STRESS; MINERAL-NUTRITION; HEAVY-METALS; RICE HUSK; SOIL; REMOVAL; GROWTH; BIOAVAILABILITY; MECHANISMS;
D O I
10.1016/j.apsoil.2017.02.021
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Chromium (Cr) is considered a serious environmental pollutant due to its wide industrial use. Toxicity of Cr to plants depends on its valence state. Cr(VI) is highly toxic and mobile whereas Cr(III) is less toxic. Cr accumulation in plants causes high toxicity in terms of alterations in the germination process, reduction in the growth of roots, stems, and leaves, which may affect total dry matter production and yield. We performed a pot experiment to investigate chromium (50 mg kg(-1)) induced phytotoxicity in wheat (Triticum aestivum L.) and to reduce its phytoavailability by amending the contaminated soil with chromium reducing bacteria (CRB) and 1% or 5% biochar. For the phytotoxicity assay, wheat was grown at different concentrations of chromium (10, 20, 30, 40 and 50 mg L-1). After 3 weeks a subsequent reduction in root and shoot length, fresh and dry biomass, percentage germination, total chlorophyll, and carbohydrates was observed. Our results showed reduction in phytotoxic effects of Cr(VI) mainly due to a reduction of toxic Cr(VI) to Cr(III). Highest reductive transformation of Cr(VI) to Cr(III) was observed in T9 (5% biochar with bacterial consortia) in all three matrices i.e. soil (99%), root (98%) and shoots (97%). The highest (90%) Cr retention within soil was also observed in T9 with the addition of 5% biochar and bacterial consortia. Of the remaining 10% Cr retention (entering into the plant), 3 mg kg(-1) and 1.3 mg kg(-1) was found in roots and shoots (on dry weight basis), respectively. Soil inoculation with consortia showed 33% higher stabilization than individual strain application. Soil amendment with biochar and bacteria showed an improvement in plant height, biomass production, seed germination, chlorophyll, protein, and carbohydrate content (p < 0.05). Findings of this study may help to reduce food chain availability of potentially toxic Cr by employing cost-effective bioremediation amendments. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:90 / 98
页数:9
相关论文
共 50 条
  • [21] Toxicity of chromium to wheat (Triticum aestivum L.) in two soils: influence of soil properties and chromium form
    Haipeng Li
    Yuqing Zhang
    Shiwei Li
    Yansu Wang
    Helian Li
    Environmental Science and Pollution Research, 2023, 30 : 100466 - 100476
  • [22] Evaluation of Phytotoxicity of Common Chernozem in the Application of Bacillus sp. and Biochar for Stimulation of Decomposition of Winter Wheat Harvest Residues (Triticum aestivum L.)
    T. V. Minnikova
    N. S. Minin
    S. I. Kolesnikov
    A. V. Gorovtsov
    V.A. Chistyakov
    Russian Agricultural Sciences, 2023, 49 (Suppl 1) : S199 - S208
  • [23] Modeling tillering in wheat (Triticum aestivum L.) using L-systems
    Evers, JB
    Vos, J
    Fournier, C
    Chelle, M
    Andrieu, B
    PLANT GROWTH MODELING AND APPLICATIONS, PROCEEDINGS, 2003, : 329 - 337
  • [24] Phytotoxicity remediation in wheat (Triticum aestivum L.) cultivated in Cadmium- contaminated soil by intercropping design
    Hussein, Yasser
    Amin, Gehan
    Askora, Ahmed
    Gahin, Hanan
    BIOSCIENCE RESEARCH, 2019, 16 (03): : 2678 - 2689
  • [25] Effect of copper ions on the associations of Azospirillum bacteria with wheat seedlings (Triticum aestivum L.)
    Muratova, A. Yu
    Lyubun, E., V
    Golubev, S. N.
    Turkovskaya, O., V
    VAVILOVSKII ZHURNAL GENETIKI I SELEKTSII, 2022, 26 (05): : 477 - 485
  • [26] DEVELOPMENT OF DNA MARKERS FOR DETECTION OF INOCULATED BACTERIA IN THE RHIZOSPHERE OF WHEAT (Triticum aestivum L.)
    Basheer, Aamna
    Zaheer, Ahmad
    Qaisrani, Muther Mansoor
    Rasul, Ghulam
    Yasmin, Sumera
    Mirza, M. Sajjad
    PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2016, 53 (01): : 135 - 142
  • [27] ASAE pulping of wheat straw (Triticum aestivum L.)
    Usta, M.
    Eroglu, H.
    Karaoglu, C.
    Cellulose Chemistry and Technology, 33 (01): : 91 - 102
  • [28] Allelopathic studies of common wheat (Triticum aestivum L.)
    Ma, YQ
    WEED BIOLOGY AND MANAGEMENT, 2005, 5 (03) : 93 - 104
  • [29] Malting quality of winter wheat (Triticum aestivum L.)
    Psota, Vratislav
    Musilova, Marketa
    Sachambula, Lenka
    Horakova, Vladimira
    Prinosil, Ales
    Smid, Frantisek
    Adamkova, Karolina
    Adam, Martin
    KVASNY PRUMYSL, 2018, 64 (06): : 302 - 313
  • [30] ASAE pulping of wheat straw (Triticum aestivum L.)
    Usta, M
    Eroglu, H
    Karaoglu, C
    CELLULOSE CHEMISTRY AND TECHNOLOGY, 1999, 33 (1-2): : 91 - 102