H-mode scrape-off layer power width in the TCV tokamak

被引:13
|
作者
Maurizio, R. [1 ,4 ]
Duval, B. P. [1 ]
Labit, B. [1 ]
Reimerdes, H. [1 ]
Faitsch, M. [2 ]
Komm, M. [3 ]
Sheikh, U. [1 ]
Theiler, C. [1 ]
机构
[1] Swiss Plasma Ctr SPC, Ecole Polytech Fed Lausanne EPFL, CH-1015 Lausanne, Switzerland
[2] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
[3] CAS, Inst Plasma Phys, Slovankou 3, Prague 18200 8, Czech Republic
[4] Gen Atom, San Diego, CA 92186 USA
基金
瑞士国家科学基金会;
关键词
divertor power exhaust; TCV; scrape-off layer width;
D O I
10.1088/1741-4326/abd147
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Obtaining acceptable conditions at the divertor targets of a next-step fusion experiment based on the tokamak concept is expected to be particularly challenging because of the small predicted value of the plasma power exhaust channel width. An increased confidence in this prediction is important to forestall any power exhaust issue and in developing corresponding divertor solutions. With the present prediction relying on empirical scaling laws based on data from six tokamaks, this letter tests these scaling laws on an additional device, the TCV tokamak. Estimates of the exhaust channel width, lambda(q), based on Thomson scattering measurements of the electron temperature and density profiles, correlate well with outer target infrared thermography. Reasonable agreement with multi-device scaling laws is found only when including both the power crossing the separatrix and the Greenwald density fraction as regression parameters. TCV's lambda(q) is 2 to 3 times smaller than in spherical tokamaks for the same value of the poloidal field. The inclusion of TCV data in the scaling laws would, therefore, require the retention of an explicit aspect ratio dependence, with consequences for all other dependencies.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] MINIMUM ENSTROPHY STATE IN THE TOKAMAK SCRAPE-OFF LAYER
    MATTOR, N
    COHEN, RH
    PLASMA PHYSICS AND CONTROLLED FUSION, 1994, 36 (07) : 1115 - 1140
  • [32] Simulation of the scrape-off layer region of tokamak devices
    Ricci, Paolo
    JOURNAL OF PLASMA PHYSICS, 2015, 81
  • [33] Drift Mechanism of Scrape-Off Layer Formation in a Tokamak
    E. G. Kaveeva
    V. A. Rozhansky
    Technical Physics Letters, 2018, 44 : 235 - 238
  • [34] Kinetic effects in tokamak scrape-off layer plasmas
    Batishchev, OV
    Krasheninnikov, SI
    Catto, PJ
    Batishcheva, AA
    Sigmar, DJ
    Xu, XQ
    Byers, JA
    Rognlien, TD
    Cohen, RH
    Shoucri, MM
    Shkarofskii, IP
    PHYSICS OF PLASMAS, 1997, 4 (05) : 1672 - 1680
  • [35] Plasma turbulence in the scrape-off layer of the ISTTOK tokamak
    Jorge, Rogerio
    Ricci, Paolo
    Halpern, Federico D.
    Loureiro, Nuno F.
    Silva, Carlos
    PHYSICS OF PLASMAS, 2016, 23 (10)
  • [36] MODELING OF THE IMPURITY PUMPING BY A TOKAMAK SCRAPE-OFF LAYER
    NEUHAUSER, J
    SCHNEIDER, W
    WUNDERLICH, R
    LACKNER, K
    BEHRINGER, K
    JOURNAL OF NUCLEAR MATERIALS, 1984, 121 : 194 - 198
  • [37] Scrape-off layer flows in the Tore Supra tokamak
    Gunn, JP
    Boucher, C
    Dionne, M
    Duran, I
    Fuchs, V
    Loarer, T
    Pánek, R
    Saint-Laurent, F
    Stöckel, J
    Adámek, J
    Bucalossi, J
    Dejarnac, R
    Devynck, P
    Hertout, P
    Hron, M
    Moreau, P
    Nanobashvili, I
    Rimini, F
    Sarkissian, A
    PLASMA 2005, 2006, 812 : 27 - +
  • [38] The GBS code for tokamak scrape-off layer simulations
    Halpern, F. D.
    Ricci, P.
    Jolliet, S.
    Loizu, J.
    Morales, J.
    Mosetto, A.
    Musil, F.
    Riva, F.
    Tran, T. M.
    Wersal, C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 315 : 388 - 408
  • [39] Parallel velocity in a narrow scrape-off layer of a tokamak
    Rozhansky, V.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2012, 54 (10)
  • [40] Turbulence and transport in the scrape-off layer TCABR tokamak
    Ferreira, AA
    Heller, MVAP
    Caldas, IL
    Lerche, EA
    Ruchko, LF
    Baccalá, LA
    PLASMA PHYSICS AND CONTROLLED FUSION, 2004, 46 (04) : 669 - 679