H-mode scrape-off layer power width in the TCV tokamak

被引:13
|
作者
Maurizio, R. [1 ,4 ]
Duval, B. P. [1 ]
Labit, B. [1 ]
Reimerdes, H. [1 ]
Faitsch, M. [2 ]
Komm, M. [3 ]
Sheikh, U. [1 ]
Theiler, C. [1 ]
机构
[1] Swiss Plasma Ctr SPC, Ecole Polytech Fed Lausanne EPFL, CH-1015 Lausanne, Switzerland
[2] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
[3] CAS, Inst Plasma Phys, Slovankou 3, Prague 18200 8, Czech Republic
[4] Gen Atom, San Diego, CA 92186 USA
基金
瑞士国家科学基金会;
关键词
divertor power exhaust; TCV; scrape-off layer width;
D O I
10.1088/1741-4326/abd147
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Obtaining acceptable conditions at the divertor targets of a next-step fusion experiment based on the tokamak concept is expected to be particularly challenging because of the small predicted value of the plasma power exhaust channel width. An increased confidence in this prediction is important to forestall any power exhaust issue and in developing corresponding divertor solutions. With the present prediction relying on empirical scaling laws based on data from six tokamaks, this letter tests these scaling laws on an additional device, the TCV tokamak. Estimates of the exhaust channel width, lambda(q), based on Thomson scattering measurements of the electron temperature and density profiles, correlate well with outer target infrared thermography. Reasonable agreement with multi-device scaling laws is found only when including both the power crossing the separatrix and the Greenwald density fraction as regression parameters. TCV's lambda(q) is 2 to 3 times smaller than in spherical tokamaks for the same value of the poloidal field. The inclusion of TCV data in the scaling laws would, therefore, require the retention of an explicit aspect ratio dependence, with consequences for all other dependencies.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Non-linear simulations of the TCV Scrape-Off Layer
    Nespoli, F.
    Furno, I.
    Halpern, F. D.
    Labit, B.
    Loizu, J.
    Ricci, P.
    Riva, F.
    NUCLEAR MATERIALS AND ENERGY, 2017, 12 : 1205 - 1208
  • [22] Scrape-off layer power flux measurements in the Tore Supra tokamak
    Gunn, J. P.
    Dejarnac, R.
    Devynck, P.
    Fedorczak, N.
    Fuchs, V.
    Gil, C.
    Kocan, M.
    Komm, M.
    Kubic, M.
    Lunt, T.
    Monier-Garbet, P.
    Pascal, J. -Y.
    St Laurent, F.
    JOURNAL OF NUCLEAR MATERIALS, 2013, 438 : S184 - S188
  • [23] Study of electromagnetic mode contributing inward particle pinch in the scrape-off layer during H-mode discharge
    Geng, K. N.
    Kong, D. F.
    Lan, T.
    Liu, A. D.
    Yu, C. X.
    Zhao, H. L.
    Yan, Lw
    Cheng, J.
    Zhao, K. J.
    Dong, J. Q.
    Duan, X. R.
    Chen, R.
    Zhang, S. B.
    Gao, X.
    Li, J.
    Xie, J. L.
    Li, H.
    Zhuang, G.
    Liu, W. D.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2019, 61 (06)
  • [24] Scrape-off layer (SOL) power width scaling and correlation between SOL and pedestal gradients across L, I and H-mode plasmas at ASDEX Upgrade
    Silvagni, D.
    Eich, T.
    Faitsch, M.
    Happel, T.
    Sieglin, B.
    David, P.
    Nille, D.
    Gil, L.
    Stroth, U.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (04)
  • [25] Theory of the scrape-off layer width in inner-wall limited tokamak plasmas
    Halpern, F. D.
    Ricci, P.
    Jolliet, S.
    Loizu, J.
    Mosetto, A.
    NUCLEAR FUSION, 2014, 54 (04)
  • [26] Plasma turbulence in the scrape-off layer of tokamak devices
    Ricci, Paolo
    Rogers, B. N.
    PHYSICS OF PLASMAS, 2013, 20 (01)
  • [27] Intermittent transport in the scrape-off layer of the SINP tokamak
    Saha, S. K.
    Chowdhury, S.
    PHYSICS OF PLASMAS, 2006, 13 (09)
  • [28] Ion temperature measurements in the tokamak scrape-off layer
    Kocan, M.
    Panek, R.
    Stockel, J.
    Hron, M.
    Gunn, J. P.
    Dejarnac, R.
    JOURNAL OF NUCLEAR MATERIALS, 2007, 363 (1436-1440) : 1436 - 1440
  • [29] MODELING OF IMPURITY FLOW IN THE TOKAMAK SCRAPE-OFF LAYER
    NEUHAUSER, J
    SCHNEIDER, W
    WUNDERLICH, R
    LACKNER, K
    NUCLEAR FUSION, 1984, 24 (01) : 39 - 47
  • [30] Drift Mechanism of Scrape-Off Layer Formation in a Tokamak
    Kaveeva, E. G.
    Rozhansky, V. A.
    TECHNICAL PHYSICS LETTERS, 2018, 44 (03) : 235 - 238