Automatic glottal inverse filtering with the Markov chain Monte Carlo method

被引:8
|
作者
Auvinen, Harri [1 ]
Raitio, Tuomo [2 ]
Airaksinen, Manu [2 ]
Siltanen, Samuli [1 ]
Story, Brad H. [3 ]
Alku, Paavo [2 ]
机构
[1] Univ Helsinki, Dept Math & Stat, Helsinki, Finland
[2] Aalto Univ, Dept Signal Proc & Acoust, Espoo, Finland
[3] Univ Arizona, Dept Speech & Hearing Sci, Tucson, AZ 85721 USA
来源
COMPUTER SPEECH AND LANGUAGE | 2014年 / 28卷 / 05期
基金
芬兰科学院;
关键词
Glottal inverse filtering; Markov chain Monte Carlo; JOINT ESTIMATION; GIBBS SAMPLER; VOICE SOURCE; VOCAL-TRACT; SPEECH; QUALITY; SYSTEM; MODEL; FLOW;
D O I
10.1016/j.csl.2013.09.004
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new glottal inverse filtering (GIF) method that utilizes a Markov chain Monte Carlo (MCMC) algorithm. First, initial estimates of the vocal tract and glottal flow are evaluated by an existing GIF method, iterative adaptive inverse filtering (IAIF). Simultaneously, the initially estimated glottal flow is synthesized using the Rosenberg-Klatt (RK) model and filtered with the estimated vocal tract filter to create a synthetic speech frame. In the MCMC estimation process, the first few poles of the initial vocal tract model and the RK excitation parameter are refined in order to minimize the error between the synthetic and original speech signals in the time and frequency domain. MCMC approximates the posterior distribution of the parameters, and the final estimate of the vocal tract is found by averaging the parameter values of the Markov chain. Experiments with synthetic vowels produced by a physical modeling approach show that the MCMC-based GIF method gives more accurate results compared to two known reference methods. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1139 / 1155
页数:17
相关论文
共 50 条
  • [21] Markov Chain Monte Carlo posterior sampling with the Hamiltonian method
    Hanson, KM
    MEDICAL IMAGING: 2001: IMAGE PROCESSING, PTS 1-3, 2001, 4322 : 456 - 467
  • [22] A MULTI-INDEX MARKOV CHAIN MONTE CARLO METHOD
    Jasra, Ajay
    Kamatani, Kengo
    Law, Kody J. H.
    Zhou, Yan
    INTERNATIONAL JOURNAL FOR UNCERTAINTY QUANTIFICATION, 2018, 8 (01) : 61 - 73
  • [23] Decoding Fingerprints Using the Markov Chain Monte Carlo Method
    Furon, Teddy
    Guyader, Arnaud
    Cerou, Frederic
    2012 IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS), 2012, : 187 - 192
  • [24] Markov Chain Monte Carlo Method without Detailed Balance
    Suwa, Hidemaro
    Todo, Synge
    PHYSICAL REVIEW LETTERS, 2010, 105 (12)
  • [25] Markov chain Monte Carlo method for tracking myocardial borders
    Janiczek, R
    Ray, N
    Acton, ST
    Roy, RJ
    French, BA
    Epstein, FH
    Computational Imaging III, 2005, 5674 : 211 - 218
  • [26] An evaluation of a Markov chain monte carlo method for the Rasch model
    Kim, SH
    APPLIED PSYCHOLOGICAL MEASUREMENT, 2001, 25 (02) : 163 - 176
  • [27] Markov chain Monte Carlo sampling using a reservoir method
    Wang, Zhonglei
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 139 : 64 - 74
  • [28] An Adaptive Markov Chain Monte Carlo Method for GARCH Model
    Takaishi, Tetsuya
    COMPLEX SCIENCES, PT 2, 2009, 5 : 1424 - 1434
  • [29] Application of Markov chain Monte carlo method in Bayesian statistics
    Zhao, Qi
    2016 INTERNATIONAL CONFERENCE ON ELECTRONIC, INFORMATION AND COMPUTER ENGINEERING, 2016, 44
  • [30] LDPC Decoder Based on Markov Chain Monte Carlo Method
    Jin, Jiejun
    Liang, Xiao
    Xu, Yunhao
    Zhang, Zaichen
    You, Xiaohu
    Zhang, Chuan
    2018 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS 2018), 2018, : 219 - 222