Markov chain Monte Carlo method for tracking myocardial borders

被引:1
|
作者
Janiczek, R [1 ]
Ray, N [1 ]
Acton, ST [1 ]
Roy, RJ [1 ]
French, BA [1 ]
Epstein, FH [1 ]
机构
[1] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22903 USA
来源
Computational Imaging III | 2005年 / 5674卷
关键词
GICOV; myocardial; Monte Carlo; Markov chain; cardiac; segmentation;
D O I
10.1117/12.598864
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Cardiac magnetic resonance studies have led to a greater understanding of the pathophysiology of ischemic heart disease. Manual segmentation of myocardial borders, a major task in the data analysis of these studies, is a tedious and time consuming process subject to observer bias. Automated segmentation reduces the time needed to process studies and removes observer bias. We. propose an automated segmentation algorithm that uses an active contour to capture the endo- and epicardial borders (if the left ventricle in a mouse heart. The contour is initialized by computing the ellipse corresponding to the maximal gradient inverse of variation (GICOV) value. The GICOV is the mean divided by the normalized standard deviation of the image intensity gradient in the outward normal direction along the contour. The GICOV is maximal when the contour lies along strong, relatively constant gradients. The contour is then evolved until it maximizes the GICOV value subject to shape constraints. The problem is formulated in a Bayesian framework and is implemented using a Markov Chain Monte Carlo technique.
引用
收藏
页码:211 / 218
页数:8
相关论文
共 50 条
  • [1] Markov Chain Monte Carlo Modular Ensemble Tracking
    Penne, Thomas
    Tilmant, Christophe
    Chateau, Thierry
    Barra, Vincent
    IMAGE AND VISION COMPUTING, 2013, 31 (6-7) : 434 - 447
  • [2] On the Markov Chain Monte Carlo (MCMC) method
    Rajeeva L. Karandikar
    Sadhana, 2006, 31 : 81 - 104
  • [3] On the Markov Chain Monte Carlo (MCMC) method
    Karandikar, RL
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2006, 31 (2): : 81 - 104
  • [4] An introduction to the Markov chain Monte Carlo method
    Wang, Wenlong
    AMERICAN JOURNAL OF PHYSICS, 2022, 90 (12) : 921 - 934
  • [5] Human tracking using floor sensors based on the Markov chain Monte Carlo method
    Murakita, T
    Ikeda, T
    Ishiguro, H
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 4, 2004, : 917 - 920
  • [6] Markov chain Monte Carlo based video tracking algorithm
    D. Kuplyakov
    E. Shalnov
    A. Konushin
    Programming and Computer Software, 2017, 43 : 224 - 229
  • [7] Markov chain Monte Carlo based video tracking algorithm
    Kuplyakov, D.
    Shalnov, E.
    Konushin, A.
    PROGRAMMING AND COMPUTER SOFTWARE, 2017, 43 (04) : 224 - 229
  • [8] Markov chain Monte Carlo data association for target tracking
    Bergman, N
    Doucet, A
    2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 705 - 708
  • [9] A flexible particle Markov chain Monte Carlo method
    Eduardo F. Mendes
    Christopher K. Carter
    David Gunawan
    Robert Kohn
    Statistics and Computing, 2020, 30 : 783 - 798
  • [10] Markov chain Monte Carlo method and its application
    Brooks, SP
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 1998, 47 (01) : 69 - 100