Markov chain Monte Carlo method for tracking myocardial borders

被引:1
|
作者
Janiczek, R [1 ]
Ray, N [1 ]
Acton, ST [1 ]
Roy, RJ [1 ]
French, BA [1 ]
Epstein, FH [1 ]
机构
[1] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22903 USA
来源
Computational Imaging III | 2005年 / 5674卷
关键词
GICOV; myocardial; Monte Carlo; Markov chain; cardiac; segmentation;
D O I
10.1117/12.598864
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Cardiac magnetic resonance studies have led to a greater understanding of the pathophysiology of ischemic heart disease. Manual segmentation of myocardial borders, a major task in the data analysis of these studies, is a tedious and time consuming process subject to observer bias. Automated segmentation reduces the time needed to process studies and removes observer bias. We. propose an automated segmentation algorithm that uses an active contour to capture the endo- and epicardial borders (if the left ventricle in a mouse heart. The contour is initialized by computing the ellipse corresponding to the maximal gradient inverse of variation (GICOV) value. The GICOV is the mean divided by the normalized standard deviation of the image intensity gradient in the outward normal direction along the contour. The GICOV is maximal when the contour lies along strong, relatively constant gradients. The contour is then evolved until it maximizes the GICOV value subject to shape constraints. The problem is formulated in a Bayesian framework and is implemented using a Markov Chain Monte Carlo technique.
引用
收藏
页码:211 / 218
页数:8
相关论文
共 50 条
  • [31] Population Markov Chain Monte Carlo
    Kathryn Blackmond Laskey
    James W. Myers
    Machine Learning, 2003, 50 : 175 - 196
  • [32] Evolutionary Markov chain Monte Carlo
    Drugan, MM
    Thierens, D
    ARTIFICIAL EVOLUTION, 2004, 2936 : 63 - 76
  • [33] Markov Chain Monte Carlo in Practice
    Jones, Galin L.
    Qin, Qian
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, 2022, 9 : 557 - 578
  • [34] On nonlinear Markov chain Monte Carlo
    Andrieu, Christophe
    Jasra, Ajay
    Doucet, Arnaud
    Del Moral, Pierre
    BERNOULLI, 2011, 17 (03) : 987 - 1014
  • [35] Structured Markov Chain Monte Carlo
    Sargent, DJ
    Hodges, JS
    Carlin, BP
    DIMENSION REDUCTION, COMPUTATIONAL COMPLEXITY AND INFORMATION, 1998, 30 : 191 - 191
  • [36] Structured Markov chain Monte Carlo
    Sargent, DJ
    Hodges, JS
    Carlin, BP
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2000, 9 (02) : 217 - 234
  • [37] Coreset Markov chain Monte Carlo
    Chen, Naitong
    Campbell, Trevor
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [38] Multilevel Markov Chain Monte Carlo
    Dodwell, T. J.
    Ketelsen, C.
    Scheichl, R.
    Teckentrup, A. L.
    SIAM REVIEW, 2019, 61 (03) : 509 - 545
  • [39] THE MARKOV CHAIN MONTE CARLO REVOLUTION
    Diaconis, Persi
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 46 (02) : 179 - 205
  • [40] MARKOV CHAIN MONTE CARLO AND IRREVERSIBILITY
    Ottobre, Michela
    REPORTS ON MATHEMATICAL PHYSICS, 2016, 77 (03) : 267 - 292