An FFT-based fast gradient method for elastic and inelastic unit cell homogenization problems

被引:41
|
作者
Schneider, Matti [1 ]
机构
[1] Fraunhofer ITWM, Dept Flow & Mat Simulat, Kaiserslautern, Germany
关键词
Computational homogenization; FFT; Accelerated first order methods; Plasticity; NUMERICAL-METHOD; NONLINEAR COMPOSITES; MECHANICAL RESPONSE; CONJUGATE GRADIENTS; ALGORITHM; SCHEME; SOLVERS; SYSTEM; MEDIA;
D O I
10.1016/j.cma.2016.11.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Building upon the previously established equivalence of the basic scheme of Moulinec Suquet's FFT-based computational homogenization method with a gradient descent method, this work concerns the impact of the fast gradient method of Nesterov in the context of computational homogenization. Nesterov's method leads to a significant speed up compared to the basic scheme for linear problems with moderate contrast, and compares favorably to the (Newton -)conjugate gradient (CG) method for problems in digital rock physics and (small strain) elastoplasticity. We present an efficient implementation requiring twice the storage of the basic scheme, but only half of the storage of the CG method. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:846 / 866
页数:21
相关论文
共 50 条
  • [31] Analysis of Multiscale Problems Using the MLFMA With the Assistance of the FFT-Based Method
    Kong, Wei-Bin
    Zhou, Hou-Xing
    Zheng, Kai-Lai
    Hong, Wei
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (09) : 4184 - 4188
  • [32] FFT-based homogenization for microstructures discretized by linear hexahedral elements
    Schneider, Matti
    Merkert, Dennis
    Kabel, Matthias
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 109 (10) : 1461 - 1489
  • [33] GRADIENT SCHEMES FOR ROBUST FFT-BASED MOTION ESTIMATION
    Tzimiropoulos, Georgios
    Argyriou, Vasileios
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 1781 - 1785
  • [34] Filtering material properties to improve FFT-based methods for numerical homogenization
    Gelebart, Lionel
    Ouaki, Franck
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 294 : 90 - 95
  • [35] FFT-based homogenization at finite strains using composite boxels (ComBo)
    Keshav, Sanath
    Fritzen, Felix
    Kabel, Matthias
    COMPUTATIONAL MECHANICS, 2023, 71 (01) : 191 - 212
  • [36] An algorithmically consistent macroscopic tangent operator for FFT-based computational homogenization
    Goekuezuem, Felix Selim
    Keip, Marc-Andre
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 113 (04) : 581 - 600
  • [37] FFT-based homogenization at finite strains using composite boxels (ComBo)
    Sanath Keshav
    Felix Fritzen
    Matthias Kabel
    Computational Mechanics, 2023, 71 : 191 - 212
  • [38] Fast FFT-based bioheat transfer equation computation
    Dillenseger, Jean-Louis
    Esneault, Simon
    COMPUTERS IN BIOLOGY AND MEDICINE, 2010, 40 (02) : 119 - 123
  • [39] Spectrum optimization via FFT-based conjugate gradient method for unimodular sequence design
    Zhao, Dehua
    Wei, Yinsheng
    Liu, Yongtan
    SIGNAL PROCESSING, 2018, 142 : 354 - 365
  • [40] An FFT-based technique for fast fractal image compression
    Ramkumar, M
    Anand, GV
    SIGNAL PROCESSING, 1997, 63 (03) : 263 - 268