An FFT-based fast gradient method for elastic and inelastic unit cell homogenization problems

被引:41
|
作者
Schneider, Matti [1 ]
机构
[1] Fraunhofer ITWM, Dept Flow & Mat Simulat, Kaiserslautern, Germany
关键词
Computational homogenization; FFT; Accelerated first order methods; Plasticity; NUMERICAL-METHOD; NONLINEAR COMPOSITES; MECHANICAL RESPONSE; CONJUGATE GRADIENTS; ALGORITHM; SCHEME; SOLVERS; SYSTEM; MEDIA;
D O I
10.1016/j.cma.2016.11.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Building upon the previously established equivalence of the basic scheme of Moulinec Suquet's FFT-based computational homogenization method with a gradient descent method, this work concerns the impact of the fast gradient method of Nesterov in the context of computational homogenization. Nesterov's method leads to a significant speed up compared to the basic scheme for linear problems with moderate contrast, and compares favorably to the (Newton -)conjugate gradient (CG) method for problems in digital rock physics and (small strain) elastoplasticity. We present an efficient implementation requiring twice the storage of the basic scheme, but only half of the storage of the CG method. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:846 / 866
页数:21
相关论文
共 50 条
  • [21] FFT-based homogenization algorithm using digital images
    Terada, K
    Suzuki, K
    Ohtsubo, H
    MATERIALS SCIENCE RESEARCH INTERNATIONAL, 1997, 3 (04): : 231 - 236
  • [22] FFT-based fast polynomial rooting
    Hoteit, L
    2000 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS, VOLS I-VI, 2000, : 3315 - 3318
  • [23] A review of nonlinear FFT-based computational homogenization methods
    Matti Schneider
    Acta Mechanica, 2021, 232 : 2051 - 2100
  • [24] A review of nonlinear FFT-based computational homogenization methods
    Schneider, Matti
    ACTA MECHANICA, 2021, 232 (06) : 2051 - 2100
  • [25] FFT-based Inverse Homogenization for Cellular Material Design
    Chen, Zeyao
    Wu, Baisheng
    Xie, Yi Min
    Wu, Xian
    Zhou, Shiwei
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 231
  • [26] An implicit FFT-based method for wave propagation in elastic heterogeneous media
    Sancho, R.
    Rey-de-Pedraza, V.
    Lafourcade, P.
    Lebensohn, R. A.
    Segurado, J.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 404
  • [27] Mixed boundary conditions for FFT-based homogenization at finite strains
    Matthias Kabel
    Sascha Fliegener
    Matti Schneider
    Computational Mechanics, 2016, 57 : 193 - 210
  • [28] FFT-based homogenization on periodic anisotropic translation invariant spaces
    Bergmann, Ronny
    Merkert, Dennis
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (01) : 266 - 292
  • [29] Mixed boundary conditions for FFT-based homogenization at finite strains
    Kabel, Matthias
    Fliegener, Sascha
    Schneider, Matti
    COMPUTATIONAL MECHANICS, 2016, 57 (02) : 193 - 210
  • [30] A fast FFT-based discrete Legendre transform
    Hale, Nicholas
    Townsend, Alex
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2016, 36 (04) : 1670 - 1684