Derivatives of the approximated electrostatic potentials in the fragment molecular orbital method

被引:46
|
作者
Nagata, Takeshi [1 ]
Fedorov, Dmitri G. [1 ]
Kitaura, Kazuo [1 ,2 ]
机构
[1] Natl Inst Adv Ind Sci & Technol, RICS, Tsukuba, Ibaraki 3058568, Japan
[2] Kyoto Univ, Grad Sch Pharmaceut Sci, Sakyo Ku, Kyoto 6068501, Japan
关键词
DENSITY-FUNCTIONAL THEORY; DYNAMICS FMO-MD; GEOMETRY OPTIMIZATIONS; ATOMIC CHARGES; SIMULATION; SYSTEMS;
D O I
10.1016/j.cplett.2009.05.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrostatic potential in the Fragment Molecular Orbital (FMO) method describes the effect of the environment upon fragments, but approximations are necessary to achieve linear scaling. We have developed the derivative of the point charge approximation in this study to enable accurate and fast gradient calculations for geometry optimizations and molecular dynamics of large systems. The accuracy is tested in comparison with the numeric gradient for solvated sodium cation, water cluster, alpha-helix of polyalanine, and hydrated chignolin. The errors are found to be reduced by approximately one order of magnitude. (C) 2009 Elsevier B. V. All rights reserved.
引用
收藏
页码:124 / 131
页数:8
相关论文
共 50 条
  • [41] Fully analytic gradient for the effective fragment molecular orbital method
    Bertoni, Colleen
    Gordon, Mark
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [42] Applications of the Fragment Molecular Orbital Method for Bio-Macromolecules
    Fukuzawa, Kaori
    Nakano, Tatsuya
    Kato, Akifumi
    Mochizuki, Yuji
    Tanaka, Shigenori
    JOURNAL OF COMPUTER CHEMISTRY-JAPAN, 2007, 6 (03) : 185 - 197
  • [43] Fully analytic energy gradient in the fragment molecular orbital method
    Nagata, Takeshi
    Brorsen, Kurt
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    Gordon, Mark S.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (12):
  • [44] Fragment Molecular Orbital Method Adaptations for Heterogeneous Computing Platforms
    Talamudupula, Sai Kiran
    Sosonkina, Masha
    Gaenko, Alexander
    Schmidt, Michael W.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2012, 2012, 9 : 489 - 497
  • [45] Analyzing protein structure with the effective fragment molecular orbital method
    Bertoni, Colleen
    Pruitt, Spencer
    Gordon, Mark
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [46] Open-Shell Formulation of the Fragment Molecular Orbital Method
    Pruitt, Spencer R.
    Fedorov, Dmitri G.
    Kitaura, Kazuo
    Gordon, Mark S.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (01) : 1 - 5
  • [47] The fragment molecular orbital method for geometry optimizations of polypeptides and proteins
    Fedorov, Dmitri G.
    Ishida, Toyokazu
    Uebayasi, Masami
    Kitaura, Kazuo
    JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (14): : 2722 - 2732
  • [48] Analytic gradient for the adaptive frozen orbital bond detachment in the fragment molecular orbital method
    Fedorov, Dmitri G.
    Avramov, Pavel V.
    Jensen, Jan H.
    Kitaura, Kazuo
    CHEMICAL PHYSICS LETTERS, 2009, 477 (1-3) : 169 - 175
  • [49] Molecular orbital analysis based on fragment molecular orbital scheme
    Sekino, H
    Sengoku, Y
    Sugiki, S
    Kurita, N
    CHEMICAL PHYSICS LETTERS, 2003, 378 (5-6) : 589 - 597
  • [50] A FINITE EXPANSION METHOD FOR THE CALCULATION AND INTERPRETATION OF MOLECULAR ELECTROSTATIC POTENTIALS
    RABINOWITZ, JR
    NAMBOODIRI, K
    WEINSTEIN, H
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1986, 29 (06) : 1697 - 1704