Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy

被引:128
|
作者
Geng, Xianguo [1 ]
Zhai, Yunyun [1 ]
Dai, H. H. [2 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
cmKdV hierarchy; Algebro-geometric solutions; Baker-Akhiezer function; Trigonal curve; TRIGONAL CURVES; ABELIAN FUNCTIONS; EQUATION; BOUSSINESQ; KDV; DECOMPOSITION; FLOWS;
D O I
10.1016/j.aim.2014.06.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on the stationary zero-curvature equation and the Lenard recursion equations, we derive the coupled modified Korteweg-de Vries (cmKdV) hierarchy associated with a 3 x 3 matrix spectral problem. Resorting to. the Baker-Akhiezer function and the characteristic polynomial of Lax matrix for the cmKdV hierarchy, we introduce a trigonal curve with three infinite points and two algebraic functions carrying the data of the divisor. The asymptotic properties of the Baker-Akhiezer function and the two algebraic functions are studied near three infinite points on the trigonal curve. Algebro-geometric solutions of the cmKdV hierarchy are obtained in terms of the Riemann theta function. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:123 / 153
页数:31
相关论文
共 50 条
  • [31] Multiple Soliton Solutions for a Variety of Coupled Modified Korteweg-de Vries Equations
    Wazwaz, Abdul-Majid
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (10-11): : 625 - 631
  • [32] Exact solutions of the modified Korteweg-de Vries equation
    F. Demontis
    Theoretical and Mathematical Physics, 2011, 168 : 886 - 897
  • [33] Explicit solutions and conservation laws of the coupled modified Korteweg-de Vries equation
    Xue, Bo
    Li, Fang
    Yang, Gang
    PHYSICA SCRIPTA, 2015, 90 (08)
  • [34] Exact solutions for modified Korteweg-de Vries equation
    Sarma, Jnanjyoti
    CHAOS SOLITONS & FRACTALS, 2009, 42 (03) : 1599 - 1603
  • [35] Algebro-Geometric Solutions of the Coupled Chaffee-Infante Reaction Diffusion Hierarchy
    Yue, Chao
    Xia, Tiecheng
    ADVANCES IN MATHEMATICAL PHYSICS, 2021, 2021
  • [36] An alternative approach to algebro-geometric solutions of the AKNS hierarchy
    Gesztesy, F
    Ratnaseelan, R
    REVIEWS IN MATHEMATICAL PHYSICS, 1998, 10 (03) : 345 - 391
  • [37] Numerical inverse scattering for the Korteweg-de Vries and modified Korteweg-de Vries equations
    Trogdon, Thomas
    Olver, Sheehan
    Deconinck, Bernard
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (11) : 1003 - 1025
  • [38] Algebro-Geometric Solutions of the Sine-Gordon Hierarchy
    Geng, Xue
    Guan, Liang
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2023, 30 (01) : 114 - 134
  • [39] Algebro-geometric solutions for the Hunter-Saxton hierarchy
    Hou, Yu
    Fan, Engui
    Zhao, Peng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (03): : 487 - 520
  • [40] Algebro-geometric integration of a modified shallow wave hierarchy
    He, Guoliang
    Zhai, Yunyun
    Zheng, Zhenzhen
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2022, 23 (3-4) : 401 - 417