Algebro-geometric solutions of the coupled modified Korteweg-de Vries hierarchy

被引:128
|
作者
Geng, Xianguo [1 ]
Zhai, Yunyun [1 ]
Dai, H. H. [2 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
[2] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
cmKdV hierarchy; Algebro-geometric solutions; Baker-Akhiezer function; Trigonal curve; TRIGONAL CURVES; ABELIAN FUNCTIONS; EQUATION; BOUSSINESQ; KDV; DECOMPOSITION; FLOWS;
D O I
10.1016/j.aim.2014.06.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on the stationary zero-curvature equation and the Lenard recursion equations, we derive the coupled modified Korteweg-de Vries (cmKdV) hierarchy associated with a 3 x 3 matrix spectral problem. Resorting to. the Baker-Akhiezer function and the characteristic polynomial of Lax matrix for the cmKdV hierarchy, we introduce a trigonal curve with three infinite points and two algebraic functions carrying the data of the divisor. The asymptotic properties of the Baker-Akhiezer function and the two algebraic functions are studied near three infinite points on the trigonal curve. Algebro-geometric solutions of the cmKdV hierarchy are obtained in terms of the Riemann theta function. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:123 / 153
页数:31
相关论文
共 50 条
  • [21] STOCHASTIC KORTEWEG-DE VRIES HIERARCHY
    BLASZAK, M
    ACTA PHYSICA POLONICA A, 1986, 70 (05) : 497 - 502
  • [22] Algebro-geometric Solutions for the Derivative Burgers Hierarchy
    Yu Hou
    Engui Fan
    Zhijun Qiao
    Zhong Wang
    Journal of Nonlinear Science, 2015, 25 : 1 - 35
  • [23] Algebro-geometric solutions for the Hunter–Saxton hierarchy
    Yu Hou
    Engui Fan
    Peng Zhao
    Zeitschrift für angewandte Mathematik und Physik, 2014, 65 : 487 - 520
  • [24] Algebro-geometric Solutions for the Derivative Burgers Hierarchy
    Hou, Yu
    Fan, Engui
    Qiao, Zhijun
    Wang, Zhong
    JOURNAL OF NONLINEAR SCIENCE, 2015, 25 (01) : 1 - 35
  • [25] On exact solutions of a coupled Korteweg-de Vries system
    Yang, Xu-Dong
    Ruan, Hang-Yu
    Lou, Sen Yue
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2007, 62 (7-8): : 353 - 367
  • [26] Exact Solutions for a Coupled Korteweg-de Vries System
    Zuo, Da-Wei
    Jia, Hui-Xian
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (11): : 1053 - 1058
  • [27] On the q-deformed modified Korteweg-de Vries hierarchy
    Tu, MH
    Lee, CR
    PHYSICS LETTERS A, 2000, 266 (2-3) : 155 - 159
  • [28] Soliton, rational and special solutions of the Korteweg-de Vries hierarchy
    Kudryashov, Nikolai A.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (04) : 1774 - 1779
  • [29] Nonlinear stability of breather solutions to the coupled modified Korteweg-de Vries equations
    Wang, Jingqun
    Tian, Lixin
    Guo, Boling
    Zhang, Yingnan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 90