Decay estimate of solutions to the coupled chemotaxis-fluid equations in R3

被引:18
|
作者
Tan, Zhong [1 ,2 ]
Zhou, Jianfeng [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Fujian Prov Key Lab Math Modeling & Sci Comp, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Chemotaxis-Navier Stokes equations; Global existence; Time decay rate; Energy method; Homogeneous Sobolev space; Homogeneous Besov space; KELLER-SEGEL SYSTEM; GLOBAL EXISTENCE; WEAK SOLUTIONS; STOKES MODEL; RATES;
D O I
10.1016/j.nonrwa.2018.01.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with a model arising from biology, which is coupled system of the chemotaxis equations and the viscous incompressible fluid equations through transport and external forcing. We study the large time behavior of solutions near a constant states to the chemotaxis-Navier-Stokes system in R-3. Appealing to a pure energy method, we first obtain a global existence theorem by assuming that the H-3 norm of the initial data is small, but the higher order derivatives can be arbitrary large. If the initial data belongs to homogeneous Sobolev norms H-s (0 <= s < 3/2 or homogeneous Besov norms B-2,infinity(-s) (0 < s <= 3/2), we obtain the optimal decay rates of the solutions and its higher order derivatives. As an immediate byproduct, we also obtain the usual L-P - L-2 (1 <= p <= 2) type of the decay rates without requiring that the L-P norm of initial data is small. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:323 / 347
页数:25
相关论文
共 50 条
  • [21] A regularity condition and temporal asymptotics for chemotaxis-fluid equations
    Chae, Myeongju
    Kang, Kyungkeun
    Lee, Jihoon
    Lee, Ki-Ahm
    NONLINEARITY, 2018, 31 (02) : 351 - 387
  • [22] Existence and large time behavior to coupled chemotaxis-fluid equations in Besov-Morrey spaces
    Yang, Minghua
    Fu, Zunwei
    Sun, Jinyi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (09) : 5867 - 5894
  • [23] Global Dynamics of a Coupled Chemotaxis-Fluid Model on Bounded Domains
    Jishan Fan
    Kun Zhao
    Journal of Mathematical Fluid Mechanics, 2014, 16 : 351 - 364
  • [24] An Application of BMO-type Space to Chemotaxis-fluid Equations
    Ming Hua Yang
    Yu Mei Zi
    Zun Wei Fu
    Acta Mathematica Sinica, English Series, 2023, 39 : 1650 - 1666
  • [25] An Application of BMO-type Space to Chemotaxis-fluid Equations
    Ming Hua YANG
    Yu Mei ZI
    Zun Wei FU
    Acta Mathematica Sinica,English Series, 2023, (08) : 1650 - 1666
  • [26] Global Dynamics of a Coupled Chemotaxis-Fluid Model on Bounded Domains
    Fan, Jishan
    Zhao, Kun
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2014, 16 (02) : 351 - 364
  • [27] An Application of BMO-type Space to Chemotaxis-fluid Equations
    Yang, Ming Hua
    Zi, Yu Mei
    Fu, Zun Wei
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (08) : 1650 - 1666
  • [28] GLOBAL SOLUTIONS FOR CHEMOTAXIS-FLUID SYSTEMS WITH SINGULAR CHEMOTACTIC SENSITIVITY
    Kim, Dongkwang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (10): : 5380 - 5395
  • [29] Numerical solutions of Schrodinger equations in R3
    Han, Houde
    Yin, Dongsheng
    Huang, Zhongyi
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (03) : 511 - 533
  • [30] SEMICLASSICAL SOLUTIONS OF THE CHOQUARD EQUATIONS IN R3
    Jin, Ke
    Shen, Zifei
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (01): : 568 - 586