Measuring predictability using multiresolution embedding

被引:0
|
作者
McCabe, TM
Weigend, AS
机构
来源
PROCEEDINGS OF THE IEEE/IAFE 1997 COMPUTATIONAL INTELLIGENCE FOR FINANCIAL ENGINEERING (CIFER) | 1997年
关键词
D O I
10.1109/CIFER.1997.618916
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The standard method of embedding time series data is to use a moving window of past values. By the inverse relationship between time and frequency localization, all information contained in the lower frequencies are lost using this scheme. Increasing the window size comes at the price of adding more degrees of freedom, and thereby worsening the curse of dimensionality. Wavelets provide a solution to this problem. Using multiresolution analysis we separate the different time-scales in a given time series. By separating the time series into its component time-scales using the translation-invariant wavelet transform, we will determine at which time-scale the series is most predictable.
引用
收藏
页码:75 / 81
页数:7
相关论文
共 50 条
  • [31] IsoScore: Measuring the Uniformity of Embedding Space Utilization
    Rudman, William
    Gillman, Nate
    Rayne, Taylor
    Eickhoff, Carsten
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), 2022, : 3325 - 3339
  • [32] Influences of Caregiving on Development: A Sensitive Period for Biological Embedding of Predictability and Safety Cues
    Gee, Dylan G.
    Cohodes, Emily M.
    CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE, 2021, 30 (05) : 376 - 383
  • [33] Measuring Implicit Bias in ICU Notes Using Word-Embedding Neural Network Models
    Cobert, Julien
    Mills, Hunter
    Lee, Albert
    Gologorskaya, Oksana
    Espejo, Edie
    Jeon, Sun Young
    Boscardin, W. John
    Heintz, Timothy A.
    Kennedy, Christopher J.
    Ashana, Deepshikha C.
    Chapman, Allyson Cook
    Raghunathan, Karthik
    Smith, Alex K.
    Lee, Sei J.
    CHEST, 2024, 165 (06) : 1481 - 1490
  • [34] Measuring predictability in ultrasonic signals: An application to scattering material characterization
    Carrion, Alicia
    Miralles, Ramon
    Lara, Guillermo
    ULTRASONICS, 2014, 54 (07) : 1904 - 1911
  • [35] Image fusion using multiresolution analysis
    Park, JH
    Kim, KO
    Yang, YK
    IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 864 - 866
  • [36] Multiresolution approximation using shifted splines
    Muller, F
    Brigger, P
    Illgner, K
    Unser, M
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (09) : 2555 - 2558
  • [37] Multiresolution segmentation using the irregular pyramid
    Bertolino, P
    Montanvert, A
    INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, PROCEEDINGS - VOL I, 1996, : 257 - 260
  • [38] IMAGE FILTERING USING MULTIRESOLUTION REPRESENTATIONS
    RANGANATH, S
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1991, 13 (05) : 426 - 440
  • [39] Multiresolution modelling using connectivity information
    Belmonte, O
    Remolar, I
    Ribelles, J
    Chover, M
    Rebollo, C
    Fernández, M
    WSCG'2002, VOLS I AND II, CONFERENCE PROCEEDINGS, 2002, : 71 - 78
  • [40] Texture analysis using multiresolution moments
    Swarnakar, V
    Acharya, R
    1998 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL 1, 1998, : 49 - 52