Measuring predictability using multiresolution embedding

被引:0
|
作者
McCabe, TM
Weigend, AS
机构
来源
PROCEEDINGS OF THE IEEE/IAFE 1997 COMPUTATIONAL INTELLIGENCE FOR FINANCIAL ENGINEERING (CIFER) | 1997年
关键词
D O I
10.1109/CIFER.1997.618916
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The standard method of embedding time series data is to use a moving window of past values. By the inverse relationship between time and frequency localization, all information contained in the lower frequencies are lost using this scheme. Increasing the window size comes at the price of adding more degrees of freedom, and thereby worsening the curse of dimensionality. Wavelets provide a solution to this problem. Using multiresolution analysis we separate the different time-scales in a given time series. By separating the time series into its component time-scales using the translation-invariant wavelet transform, we will determine at which time-scale the series is most predictable.
引用
收藏
页码:75 / 81
页数:7
相关论文
共 50 条
  • [21] ON MEASURING FLUCTUATING ENVIRONMENTS - PREDICTABILITY, CONSTANCY, AND CONTINGENCY
    STEARNS, SC
    ECOLOGY, 1981, 62 (01) : 185 - 199
  • [22] Measuring novelty in science with word embedding
    Shibayama, Sotaro
    Yin, Deyun
    Matsumoto, Kuniko
    PLOS ONE, 2021, 16 (07):
  • [23] Investigating Programming Performance Predictability from Embedding Vectors of Coding Behaviors
    Igawa, Ikkei
    Taniguchi, Yuta
    Minematsu, Tsubasa
    Okubo, Fumiya
    Shimada, Atsushi
    31ST INTERNATIONAL CONFERENCE ON COMPUTERS IN EDUCATION, ICCE 2023, VOL I, 2023, : 487 - 489
  • [24] Measuring Complexity and Predictability in Networks with Multiscale Entropy Analysis
    Riihijaervi, Janne
    Wellens, Matthias
    Maehoenen, Petri
    IEEE INFOCOM 2009 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS, VOLS 1-5, 2009, : 1107 - 1115
  • [25] Measuring the predictability of life outcomes with a scientific mass collaboration
    Salganik, Matthew J.
    Lundberg, Ian
    Kindel, Alexander T.
    Ahearn, Caitlin E.
    Al-Ghoneim, Khaled
    Almaatouq, Abdullah
    Altschul, Drew M.
    Brand, Jennie E.
    Carnegie, Nicole Bohme
    Compton, Ryan James
    Datta, Debanjan
    Davidson, Thomas
    Filippova, Anna
    Gilroy, Connor
    Goode, Brian J.
    Jahani, Eaman
    Kashyap, Ridhi
    Kirchner, Antje
    McKay, Stephen
    Morgan, Allison C.
    Pentland, Alex
    Polimis, Kivan
    Raes, Louis
    Rigobon, Daniel E.
    Roberts, Claudia V.
    Stanescu, Diana M.
    Suhara, Yoshihiko
    Usmania, Adaner
    Wang, Erik H.
    Adem, Muna
    Alhajri, Abdulla
    AlShebli, Bedoor
    Amin, Redwane
    Amos, Ryan B.
    Argyle, Lisa P.
    Baer-Bositis, Livia
    Buechi, Moritz
    Chung, Bo-Ryehn
    Eggert, William
    Faletto, Gregory
    Fan, Zhilin
    Freese, Jeremy
    Gadgil, Tejomay
    Gagne, Josh
    Gao, Yue
    Halpern-Manners, Andrew
    Hashim, Sonia P.
    Hausen, Sonia
    He, Guanhua
    Higuera, Kimberly
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (15) : 8398 - 8403
  • [26] Multiresolution simulations using particles
    Bergdorf, Michael
    Koumoutsakos, Petros
    HIGH PERFORMANCE COMPUTING FOR COMPUTATIONAL SCIENCE - VECPAR 2006, 2007, 4395 : 391 - +
  • [27] Measuring Predictability of Autonomous Network Transitions into Bursting Dynamics
    Mofakham, Sima
    Zochowski, Michal
    PLOS ONE, 2015, 10 (04):
  • [28] Measuring predictability of autonomous network transitions into bursting dynamics
    Sima Mofakham
    Michal Zochowski
    BMC Neuroscience, 15 (Suppl 1)
  • [29] Wasserstein task embedding for measuring task similarities
    Liu, Xinran
    Bai, Yikun
    Lu, Yuzhe
    Soltoggio, Andrea
    Kolouri, Soheil
    NEURAL NETWORKS, 2025, 181
  • [30] Measuring Entanglement in a Photonic Embedding Quantum Simulator
    Loredo, J. C.
    Almeida, M. P.
    Di Candia, R.
    Pedernales, J. S.
    Casanova, J.
    Solano, E.
    White, A. G.
    PHYSICAL REVIEW LETTERS, 2016, 116 (07)