Local scales and multiscale image decompositions

被引:12
|
作者
Jones, Peter W. [1 ]
Le, Triet M. [1 ]
机构
[1] Yale Univ, Dept Math, New Haven, CT 06511 USA
基金
美国国家科学基金会;
关键词
TOTAL VARIATION MINIMIZATION; EXISTENCE;
D O I
10.1016/j.acha.2008.08.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of local scales (oscillations) in images and use the knowledge of local scales for image decompositions. Denote by K-t(x)=(e(-2 pi t vertical bar xi vertical bar 2))(v)(x), t>o, the Gaussian (heat) kernel. Motivated from the Triebel-Lizorkin function space F-p,infinity(alpha), we define a local scale of f at x to be t(x) >= 0 such that vertical bar Sf(x, t)vertical bar=vertical bar t(1-alpha/2)partial derivative K-t/partial derivative t*f(x)vertical bar is a local maximum with respect to t for some alpha < 2. For each x, we obtain a set of scales that f exhibits at x. The choice of a and a local smoothing method of local scales via the nontangential control will be discussed. We then extend the work in [J.B. Garnett, T.M. Le. Y. Meyer, L.A. Vese, Image decomposition using bounded variation and homogeneous Besov spaces, Appl. Comput. Harmon. Anal. 23 (2007) 25-56] to decompose f into u + v, with u being piecewise-smooth and v being texture, via the minimization problem inf(u is an element of BV){kappa(u) = vertical bar u vertical bar(BV) + lambda parallel to K-<(t)over bar>(.)*(f - u)(.)parallel to(L1)}, where (t) over bar (x) is some appropriate choice of a local scale to be captured at x in the oscillatory part V. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:371 / 394
页数:24
相关论文
共 50 条
  • [41] Multimodal Remote Sensing Image Registration With Accuracy Estimation at Local and Global Scales
    Uss, Mikhail L.
    Vozel, Benoit
    Lukin, Vladimir V.
    Chehdi, Kacem
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (11): : 6587 - 6605
  • [42] Definability and stability of multiscale decompositions for manifold-valued data
    Grohs, Philipp
    Wallner, Johannes
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2012, 349 (05): : 1648 - 1664
  • [43] Geometric multiscale decompositions of dynamic low-rank matrices
    Grohs, P.
    COMPUTER AIDED GEOMETRIC DESIGN, 2013, 30 (08) : 805 - 826
  • [44] Multiscale Data Analysis Using Binning, Tensor Decompositions, and Backtracking
    Leggas, Dimitri
    Henretty, Thomas S.
    Ezick, James
    Baskaran, Muthu
    von Hofe, Brendan
    Cimaszewski, Grace
    Langston, M. Harper
    Lethin, Richard
    2020 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2020,
  • [45] AUDIO SOURCE SEPARATION INFORMED BY REDUNDANCY WITH GREEDY MULTISCALE DECOMPOSITIONS
    Moussallam, Manuel
    Richard, Gael
    Daudet, Laurent
    2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2012, : 2644 - 2648
  • [46] Revisiting Deep Intrinsic Image Decompositions
    Fan, Qingnan
    Yang, Jiaolong
    Hua, Gang
    Chen, Baoquan
    Wipf, David
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 8944 - 8952
  • [47] Subband decompositions for hyperspectral image analysis
    Hong, PS
    Smith, MJT
    THIRTY-SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS - CONFERENCE RECORD, VOLS 1 AND 2, CONFERENCE RECORD, 2002, : 791 - 795
  • [48] Image Decompositions and Transformations as Peaks and Wells
    Meyer, Fernand
    MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS TO IMAGE AND SIGNAL PROCESSING, (ISMM 2011), 2011, 6671 : 25 - 36
  • [49] Multiscale image registration
    Paquin, D
    Levy, D
    Schreibmann, E
    Xing, L
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2006, 3 (02) : 389 - 418
  • [50] Multiscale image registration
    Paquin, D. C.
    Levy, D.
    Xing, L.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2006, 66 (03): : S647 - S647