Local scales and multiscale image decompositions

被引:12
|
作者
Jones, Peter W. [1 ]
Le, Triet M. [1 ]
机构
[1] Yale Univ, Dept Math, New Haven, CT 06511 USA
基金
美国国家科学基金会;
关键词
TOTAL VARIATION MINIMIZATION; EXISTENCE;
D O I
10.1016/j.acha.2008.08.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of local scales (oscillations) in images and use the knowledge of local scales for image decompositions. Denote by K-t(x)=(e(-2 pi t vertical bar xi vertical bar 2))(v)(x), t>o, the Gaussian (heat) kernel. Motivated from the Triebel-Lizorkin function space F-p,infinity(alpha), we define a local scale of f at x to be t(x) >= 0 such that vertical bar Sf(x, t)vertical bar=vertical bar t(1-alpha/2)partial derivative K-t/partial derivative t*f(x)vertical bar is a local maximum with respect to t for some alpha < 2. For each x, we obtain a set of scales that f exhibits at x. The choice of a and a local smoothing method of local scales via the nontangential control will be discussed. We then extend the work in [J.B. Garnett, T.M. Le. Y. Meyer, L.A. Vese, Image decomposition using bounded variation and homogeneous Besov spaces, Appl. Comput. Harmon. Anal. 23 (2007) 25-56] to decompose f into u + v, with u being piecewise-smooth and v being texture, via the minimization problem inf(u is an element of BV){kappa(u) = vertical bar u vertical bar(BV) + lambda parallel to K-<(t)over bar>(.)*(f - u)(.)parallel to(L1)}, where (t) over bar (x) is some appropriate choice of a local scale to be captured at x in the oscillatory part V. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:371 / 394
页数:24
相关论文
共 50 条
  • [21] Blind Image Quality Assessment Using Multiscale Local Binary Patterns
    Freitas, Pedro Garcia
    Akamine, Welington Y. L.
    Farias, Mylene C. Q.
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2016, 60 (06)
  • [22] Edge-preserving Multiscale Image Decomposition based on Local Extrema
    Subr, Kartic
    Soler, Cyril
    Durand, Fredo
    ACM TRANSACTIONS ON GRAPHICS, 2009, 28 (05): : 1 - 9
  • [23] DECOMPOSITIONS FOR LOCAL MORREY SPACES
    Batbold, Ts.
    Sawano, Y.
    EURASIAN MATHEMATICAL JOURNAL, 2014, 5 (03): : 9 - 44
  • [24] Local Balance in Graph Decompositions
    Bowditch, Flora C.
    Dukes, Peter J.
    GRAPHS AND COMBINATORICS, 2022, 38 (02)
  • [25] Local Balance in Graph Decompositions
    Flora C. Bowditch
    Peter J. Dukes
    Graphs and Combinatorics, 2022, 38
  • [26] On Liouville decompositions in local fields
    Burger, EB
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (11) : 3305 - 3310
  • [27] Sparse representations for image decompositions
    Geiger, D
    Liu, TL
    Donahue, MJ
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 1999, 33 (02) : 139 - 156
  • [28] Review of multiscale geometric decompositions in a remote sensing context
    Zaouali, Mariem
    Bouzidi, Sonia
    Zagrouba, Ezzeddine
    JOURNAL OF ELECTRONIC IMAGING, 2016, 25 (06)
  • [29] Vector Field Decompositions Using Multiscale Poisson Kernel
    Bhatia, Harsh
    Kirby, Robert M.
    Pascucci, Valerio
    Bremer, Peer-Timo
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (09) : 3781 - 3793
  • [30] Intrinsic Decompositions for Image Editing
    Bonneel, Nicolas
    Kovacs, Balazs
    Paris, Sylvain
    Bala, Kavita
    COMPUTER GRAPHICS FORUM, 2017, 36 (02) : 593 - 609