Local scales and multiscale image decompositions

被引:12
|
作者
Jones, Peter W. [1 ]
Le, Triet M. [1 ]
机构
[1] Yale Univ, Dept Math, New Haven, CT 06511 USA
基金
美国国家科学基金会;
关键词
TOTAL VARIATION MINIMIZATION; EXISTENCE;
D O I
10.1016/j.acha.2008.08.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of local scales (oscillations) in images and use the knowledge of local scales for image decompositions. Denote by K-t(x)=(e(-2 pi t vertical bar xi vertical bar 2))(v)(x), t>o, the Gaussian (heat) kernel. Motivated from the Triebel-Lizorkin function space F-p,infinity(alpha), we define a local scale of f at x to be t(x) >= 0 such that vertical bar Sf(x, t)vertical bar=vertical bar t(1-alpha/2)partial derivative K-t/partial derivative t*f(x)vertical bar is a local maximum with respect to t for some alpha < 2. For each x, we obtain a set of scales that f exhibits at x. The choice of a and a local smoothing method of local scales via the nontangential control will be discussed. We then extend the work in [J.B. Garnett, T.M. Le. Y. Meyer, L.A. Vese, Image decomposition using bounded variation and homogeneous Besov spaces, Appl. Comput. Harmon. Anal. 23 (2007) 25-56] to decompose f into u + v, with u being piecewise-smooth and v being texture, via the minimization problem inf(u is an element of BV){kappa(u) = vertical bar u vertical bar(BV) + lambda parallel to K-<(t)over bar>(.)*(f - u)(.)parallel to(L1)}, where (t) over bar (x) is some appropriate choice of a local scale to be captured at x in the oscillatory part V. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:371 / 394
页数:24
相关论文
共 50 条
  • [1] Multiscale local polynomial decompositions using bandwidths as scales
    Maarten Jansen
    Mohamed Amghar
    Statistics and Computing, 2017, 27 : 1383 - 1399
  • [2] Multiscale local polynomial decompositions using bandwidths as scales
    Jansen, Maarten
    Amghar, Mohamed
    STATISTICS AND COMPUTING, 2017, 27 (05) : 1383 - 1399
  • [3] Multiplicative multiscale image decompositions: Analysis and modeling
    Romberg, JK
    Riedi, R
    Choi, H
    Baraniuk, RG
    WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VIII PTS 1 AND 2, 2000, 4119 : 698 - 709
  • [4] Multiscale wedgelet image analysis: Fast decompositions and modeling
    Romberg, JK
    Wakin, M
    Baraniuk, R
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, 2002, : 585 - 588
  • [5] A multiscale image representation using hierarchical (BV, L2) decompositions
    Tadmor, E
    Nezzar, S
    Vese, L
    MULTISCALE MODELING & SIMULATION, 2004, 2 (04): : 554 - 579
  • [6] Multiscale decompositions on bounded domains
    Cohen, A
    Dahmen, W
    Devore, R
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (08) : 3651 - 3685
  • [7] A comparison of local versus global image decompositions for visual speechreading
    Gray, MS
    Movellan, JR
    Sejnowski, TJ
    PROCEEDINGS OF THE 4TH JOINT SYMPOSIUM ON NEURAL COMPUTATION, VOL 7, 1997, : 92 - 98
  • [8] Image classification using local tensor singular value decompositions
    Newman, Elizabeth
    Kilmer, Misha
    Horesh, Lior
    2017 IEEE 7TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2017,
  • [9] Nonlinear pyramidal image decompositions based on local contrast parameters
    Vandergheynst, P
    Gerek, ÖN
    PROCEEDINGS OF THE IEEE-EURASIP WORKSHOP ON NONLINEAR SIGNAL AND IMAGE PROCESSING (NSIP'99), 1999, : 770 - 773
  • [10] Multiscale image fusion based on local standard deviation
    Wang Xuesong
    Huang Feng
    Wu Xianyu
    Huang Weilan
    SEVENTH ASIA PACIFIC CONFERENCE ON OPTICS MANUFACTURE (APCOM 2021), 2022, 12166