Classification of Motor Imagery Tasks Using Phase Synchronization Analysis of EEG Based on Multivariate Empirical Mode Decomposition

被引:0
|
作者
Liang, Shuang [1 ,2 ]
Choi, Kup-Sze [3 ]
Qin, Jing [1 ,2 ]
Pang, Wai-Man [4 ]
Heng, Pheng-Ann [1 ,2 ,5 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Integrat Technol, Beijing 100864, Peoples R China
[2] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Sch Nursing, Hong Kong, Hong Kong, Peoples R China
[4] Caritas Inst Higher Educ, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
[5] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Hong Kong, Peoples R China
关键词
Electroencephalogram (EEG); motor imagery (MI); multivariate empirical mode decomposition (MEMD); phase synchronization; brain connectivity;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Phase synchronization has been employed to study brain networks and connectivity patterns. The phase locking value (PLV) is one of the most effective measures widely used for phase synchronization analysis. We first calculate the PLVs of the pair-wise intrinsic mode functions (IMFs) based on multivariate empirical mode decomposition (MEMD) method. Next, the average PLV of the prominent pairs relative to the rest duration is adopted for the classification of motor imagery (MI) tasks. Comparative analysis with the EMD-based PLV method, the proposed method has a significant increase in feature separability for most subjects. This paper demonstrates that MEMD-based PLV method can provide an effective feature in the MI task classification and the potential for BCI applications.
引用
收藏
页码:674 / 677
页数:4
相关论文
共 50 条
  • [31] A New Method to Generate Artificial Frames Using the Empirical Mode Decomposition for an EEG-Based Motor Imagery BCI
    Dinares-Ferran, Josep
    Ortner, Rupert
    Guger, Christoph
    Sole-Casals, Jordi
    FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [32] An Empirical Mode Decomposition Based Filtering Method for Classification of Motor-Imagery EEG Signals for Enhancing Brain-Computer Interface
    Gaur, Pramod
    Pachori, Ram Bilas
    Wang, Hui
    Prasad, Girijesh
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [33] EEG based Motor imagery classification using instantaneous phase difference sequence
    Kumar, Satyam
    Reddy, Tharun
    Behera, Laxmidhar
    2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 499 - 504
  • [34] Adaptation of motor imagery EEG classification model based on tensor decomposition
    Li, Xinyang
    Guan, Cuntai
    Zhang, Haihong
    Ang, Kai Keng
    Ong, Sim Heng
    JOURNAL OF NEURAL ENGINEERING, 2014, 11 (05)
  • [35] Motor Imagery signal Classification for BCI System Using Empirical Mode Decomposition and Bandpower Feature Extraction
    Trad, Dalila
    Al-Ani, Tarik
    Jemni, Mohamed
    BRAIN-BROAD RESEARCH IN ARTIFICIAL INTELLIGENCE AND NEUROSCIENCE, 2016, 7 (02): : 5 - 16
  • [36] A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry
    Gaur, Pramod
    Pachori, Ram Bilas
    Wang, Hui
    Prasad, Girijesh
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 95 : 201 - 211
  • [37] Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks
    Pfurtscheller, G.
    Brunner, C.
    Schloegl, A.
    da Silva, F. H. Lopes
    NEUROIMAGE, 2006, 31 (01) : 153 - 159
  • [38] Truncation thresholds based empirical mode decomposition approach for classification performance of motor imagery BCI systems
    Dagdevir, Eda
    Tokmakci, Mahmut
    CHAOS SOLITONS & FRACTALS, 2021, 152
  • [39] AI inspired EEG-based spatial feature selection method using multivariate empirical mode decomposition for emotion classification
    Asghar, Muhammad Adeel
    Khan, Muhammad Jamil
    Rizwan, Muhammad
    Shorfuzzaman, Mohammad
    Mehmood, Raja Majid
    MULTIMEDIA SYSTEMS, 2022, 28 (04) : 1275 - 1288
  • [40] EEG-based classification of emotions using empirical mode decomposition and autoregressive model
    Zhang, Yong
    Zhang, Suhua
    Ji, Xiaomin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (20) : 26697 - 26710