Classification of Motor Imagery Tasks Using Phase Synchronization Analysis of EEG Based on Multivariate Empirical Mode Decomposition

被引:0
|
作者
Liang, Shuang [1 ,2 ]
Choi, Kup-Sze [3 ]
Qin, Jing [1 ,2 ]
Pang, Wai-Man [4 ]
Heng, Pheng-Ann [1 ,2 ,5 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Integrat Technol, Beijing 100864, Peoples R China
[2] Chinese Univ Hong Kong, Hong Kong, Hong Kong, Peoples R China
[3] Hong Kong Polytech Univ, Sch Nursing, Hong Kong, Hong Kong, Peoples R China
[4] Caritas Inst Higher Educ, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
[5] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Hong Kong, Peoples R China
关键词
Electroencephalogram (EEG); motor imagery (MI); multivariate empirical mode decomposition (MEMD); phase synchronization; brain connectivity;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Phase synchronization has been employed to study brain networks and connectivity patterns. The phase locking value (PLV) is one of the most effective measures widely used for phase synchronization analysis. We first calculate the PLVs of the pair-wise intrinsic mode functions (IMFs) based on multivariate empirical mode decomposition (MEMD) method. Next, the average PLV of the prominent pairs relative to the rest duration is adopted for the classification of motor imagery (MI) tasks. Comparative analysis with the EMD-based PLV method, the proposed method has a significant increase in feature separability for most subjects. This paper demonstrates that MEMD-based PLV method can provide an effective feature in the MI task classification and the potential for BCI applications.
引用
收藏
页码:674 / 677
页数:4
相关论文
共 50 条
  • [21] Motor Imagery EEG Recognition Based on Scheduled Empirical Mode Decomposition and Adaptive Denoising Autoencoders
    Xie, Tao
    Ma, Weichang
    Li, Xingchen
    Li, Wei
    Hao, Bohui
    Tang, Xianlun
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 1528 - 1532
  • [22] EEG-Based Prediction of Epileptic Seizures Using Phase Synchronization Elicited from Noise-Assisted Multivariate Empirical Mode Decomposition
    Cho, Dongrae
    Min, Beomjun
    Kim, Jongin
    Lee, Boreom
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2017, 25 (08) : 1309 - 1318
  • [23] Classification of Intended Motor Movement using Surface EEG Ensemble Empirical Mode Decomposition
    Kuo, Ching-Chang
    Lin, William S.
    Dressel, Chelsea A.
    Chiu, Alan W. L.
    2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 6281 - 6284
  • [24] Motor Imagery EEG Signals Classification Based on Mode Amplitude and Frequency Components Using Empirical Wavelet Transform
    Sadiq, Muhammad Tariq
    Yu, Xiaojun
    Yuan, Zhaohui
    Fan, Zeming
    Rehman, Ateeq Ur
    Li, Guoqi
    Xiao, Gaoxi
    IEEE ACCESS, 2019, 7 : 127678 - 127692
  • [25] Classification of non-motor cognitive task in EEG based brain-computer interface using phase space features in multivariate empirical mode decomposition domain
    Dutta, Suman
    Singh, Mandeep
    Kumar, Amod
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2018, 39 : 378 - 389
  • [26] Classification of Two-Class Motor Imagery EEG Signals Using Empirical Mode Decomposition and Hilbert-Huang Transformation
    Ghritlahare, Ravindra
    Sahu, Mridu
    Kumar, Rahul
    COMPUTING AND NETWORK SUSTAINABILITY, 2019, 75
  • [27] Classification based on sparse representations of attributes derived from empirical mode decomposition in a multiclass problem of motor imagery in EEG signals
    de Menezes, Jose Antonio Alves
    Gomes, Juliana Carneiro
    Hazin, Vitor de Carvalho
    Dantas, Julio Cesar Sousa
    Rodrigues, Marcelo Cairrao Araujo
    dos Santos, Wellington Pinheiro
    HEALTH AND TECHNOLOGY, 2023, 13 (05) : 747 - 767
  • [28] Classification based on sparse representations of attributes derived from empirical mode decomposition in a multiclass problem of motor imagery in EEG signals
    José Antonio Alves de Menezes
    Juliana Carneiro Gomes
    Vitor de Carvalho Hazin
    Júlio César Sousa Dantas
    Marcelo Cairrão Araújo Rodrigues
    Wellington Pinheiro dos Santos
    Health and Technology, 2023, 13 : 747 - 767
  • [29] Classification of EEG Motor Imagery Tasks Using Convolution Neural Networks
    Ling, Sai Ho
    Makgawinata, Henry
    Monsivais, Fernando Huerta
    Lourenco, Andre dos Santos Goncalves
    Lyu, Juan
    Chai, Rifai
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 758 - 761
  • [30] Classifying Motor Imagery EEG by Empirical Mode Decomposition Based on Spatial-Time-Frequency Joint Analysis Approach
    Wei, Pengfei
    Li, Qiuhua
    Li, Guanglin
    2009 INTERNATIONAL CONFERENCE ON FUTURE BIOMEDICAL INFORMATION ENGINEERING (FBIE 2009), 2009, : 489 - 492