Consecutive magic graphs

被引:2
|
作者
Balbuena, C.
Barker, E.
Lin, Yuqing
Miller, M.
Sugeng, K.
机构
[1] Univ Politecn Catalunya, Dept Matemat Aplicada 3, E-08034 Barcelona, Spain
[2] Univ Ballarat, Sch Informat Technol & Math Sci, Ballarat, Vic 3353, Australia
[3] Univ Newcastle, Sch Elect Engn & Comp Sci, Newcastle, NSW 2308, Australia
关键词
vertex-magic labeling; super vertex-magic labeling; consecutive magic labeling;
D O I
10.1016/j.disc.2006.03.064
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph of order it and size e. A vertex-magic total labeling is an assignment of the integers 1, 2,..., n + e to the vertices and the edges of G, so that at each vertex, the vertex label and the labels on the edges incident at that vertex, add to a fixed constant, called the magic number of G. Such a labeling is a-vertex consecutive magic if the set of the labels of the vertices is {a + 1, a + 2,..., a + n}, and is b-edge consecutive magic if the set of labels of the edges is {b + 1, b + 2,..., b + e}. In this paper we prove that if an a-vertex consecutive magic graph has isolated vertices then the order and the size satisfy (n - 1)(2) + n(2) = (2e + 1)(2). Moreover. we show that every tree with even order is not a-vertex consecutive magic and, if a tree of odd order is a-vertex consecutive then a = n - 1. Furthermore, we show that every a-vertex consecutive magic graph has minimum degree at least two if a = 0, or both 2e >= root 6n(2) - 2n + 1 and 2a <= e, and the minimum degree is at least three if both 2e <= root 10n(2) - 6n + 1 + 4, and 2a <= e. Finally, we state analogous results for b-edge consecutive magic graphs. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1817 / 1829
页数:13
相关论文
共 50 条
  • [31] PSEUDO-MAGIC GRAPHS
    JEURISSEN, RH
    DISCRETE MATHEMATICS, 1983, 43 (2-3) : 207 - 214
  • [32] On group vertex magic graphs
    Kamatchi, N.
    Paramasivam, K.
    Prajeesh, A. V.
    Sabeel, K. Muhammed
    Arumugam, S.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (01) : 461 - 465
  • [33] DISTANCE MAGIC GRAPHS - A SURVEY
    Arumugam, S.
    Froncek, Dalibor
    Kamatchi, N.
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2011, : 11 - 26
  • [34] Some distance magic graphs
    Godinho, Aloysius
    Singh, T.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2018, 15 (01) : 1 - 6
  • [35] CHARACTERIZATIONS OF REGULAR MAGIC GRAPHS
    DOOB, M
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1978, 25 (01) : 94 - 104
  • [36] Super magic deficiency of graphs
    Raheem, A.
    Javaid, M.
    Hanif, M.
    Hasni, R.
    Shah, Nasir
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (06): : 1729 - 1743
  • [37] DISCONNECTED GRAPHS WITH MAGIC LABELINGS
    JEURISSEN, RH
    DISCRETE MATHEMATICS, 1983, 43 (01) : 47 - 53
  • [38] Distance magic circulant graphs
    Cichacz, Sylwia
    Froncek, Dalibor
    DISCRETE MATHEMATICS, 2016, 339 (01) : 84 - 94
  • [39] On Barycentric-Magic Graphs
    Varela, Maria T.
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2015, 10 (01): : 121 - 129
  • [40] MAGIC VALUATIONS OF FINITE GRAPHS
    KOTZIG, A
    ROSA, A
    CANADIAN MATHEMATICAL BULLETIN, 1970, 13 (04): : 451 - &