Consecutive magic graphs

被引:2
|
作者
Balbuena, C.
Barker, E.
Lin, Yuqing
Miller, M.
Sugeng, K.
机构
[1] Univ Politecn Catalunya, Dept Matemat Aplicada 3, E-08034 Barcelona, Spain
[2] Univ Ballarat, Sch Informat Technol & Math Sci, Ballarat, Vic 3353, Australia
[3] Univ Newcastle, Sch Elect Engn & Comp Sci, Newcastle, NSW 2308, Australia
关键词
vertex-magic labeling; super vertex-magic labeling; consecutive magic labeling;
D O I
10.1016/j.disc.2006.03.064
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph of order it and size e. A vertex-magic total labeling is an assignment of the integers 1, 2,..., n + e to the vertices and the edges of G, so that at each vertex, the vertex label and the labels on the edges incident at that vertex, add to a fixed constant, called the magic number of G. Such a labeling is a-vertex consecutive magic if the set of the labels of the vertices is {a + 1, a + 2,..., a + n}, and is b-edge consecutive magic if the set of labels of the edges is {b + 1, b + 2,..., b + e}. In this paper we prove that if an a-vertex consecutive magic graph has isolated vertices then the order and the size satisfy (n - 1)(2) + n(2) = (2e + 1)(2). Moreover. we show that every tree with even order is not a-vertex consecutive magic and, if a tree of odd order is a-vertex consecutive then a = n - 1. Furthermore, we show that every a-vertex consecutive magic graph has minimum degree at least two if a = 0, or both 2e >= root 6n(2) - 2n + 1 and 2a <= e, and the minimum degree is at least three if both 2e <= root 10n(2) - 6n + 1 + 4, and 2a <= e. Finally, we state analogous results for b-edge consecutive magic graphs. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1817 / 1829
页数:13
相关论文
共 50 条
  • [21] Magic graphs with pendant edges
    Ngurah, A. A. G.
    Baskoro, E. T.
    Tomescu, I.
    ARS COMBINATORIA, 2011, 99 : 149 - 160
  • [22] ON MAGIC LABELINGS OF GRID GRAPHS
    BACA, M
    ARS COMBINATORIA, 1992, 33 : 295 - 299
  • [23] ON CERTAIN PROPERTIES OF MAGIC GRAPHS
    BACA, M
    UTILITAS MATHEMATICA, 1990, 37 : 259 - 264
  • [24] On Distance Magic Harary Graphs
    Prajeesh, A., V
    Paramasivam, K.
    Kathiresan, K. M.
    UTILITAS MATHEMATICA, 2020, 115 : 251 - 266
  • [25] On magic and supermagic circulant graphs
    Semanicova, Andrea
    DISCRETE MATHEMATICS, 2006, 306 (18) : 2263 - 2269
  • [26] Totally magic labelings of graphs
    Calhoun, Bill
    Lister, Lisa
    Ferland, Kevin
    Polhill, John
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2005, 32 : 47 - 59
  • [27] Cycle-magic graphs
    Llado, A.
    Moragas, J.
    DISCRETE MATHEMATICS, 2007, 307 (23) : 2925 - 2933
  • [28] EDGE MAGIC LABELING OF GRAPHS
    Manickam, K.
    Marudai, M.
    UTILITAS MATHEMATICA, 2009, 79 : 181 - 187
  • [29] UNION OF DISTANCE MAGIC GRAPHS
    Cichacz, Sylwia
    Nikodem, Mateusz
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (01) : 239 - 249
  • [30] MAGIC LABELINGS OF REGULAR GRAPHS
    Kovar, Petr
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2007, 4 (03) : 261 - 275