Consecutive magic graphs

被引:2
|
作者
Balbuena, C.
Barker, E.
Lin, Yuqing
Miller, M.
Sugeng, K.
机构
[1] Univ Politecn Catalunya, Dept Matemat Aplicada 3, E-08034 Barcelona, Spain
[2] Univ Ballarat, Sch Informat Technol & Math Sci, Ballarat, Vic 3353, Australia
[3] Univ Newcastle, Sch Elect Engn & Comp Sci, Newcastle, NSW 2308, Australia
关键词
vertex-magic labeling; super vertex-magic labeling; consecutive magic labeling;
D O I
10.1016/j.disc.2006.03.064
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph of order it and size e. A vertex-magic total labeling is an assignment of the integers 1, 2,..., n + e to the vertices and the edges of G, so that at each vertex, the vertex label and the labels on the edges incident at that vertex, add to a fixed constant, called the magic number of G. Such a labeling is a-vertex consecutive magic if the set of the labels of the vertices is {a + 1, a + 2,..., a + n}, and is b-edge consecutive magic if the set of labels of the edges is {b + 1, b + 2,..., b + e}. In this paper we prove that if an a-vertex consecutive magic graph has isolated vertices then the order and the size satisfy (n - 1)(2) + n(2) = (2e + 1)(2). Moreover. we show that every tree with even order is not a-vertex consecutive magic and, if a tree of odd order is a-vertex consecutive then a = n - 1. Furthermore, we show that every a-vertex consecutive magic graph has minimum degree at least two if a = 0, or both 2e >= root 6n(2) - 2n + 1 and 2a <= e, and the minimum degree is at least three if both 2e <= root 10n(2) - 6n + 1 + 4, and 2a <= e. Finally, we state analogous results for b-edge consecutive magic graphs. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1817 / 1829
页数:13
相关论文
共 50 条
  • [1] On magic and consecutive antimagic factorizations of graphs
    Liang, Zhihe
    Liang, Shixin
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (02): : 427 - 437
  • [2] On consecutive edge magic total labeling of graphs
    Sugeng, K. A.
    Miller, M.
    JOURNAL OF DISCRETE ALGORITHMS, 2008, 6 (01) : 59 - 65
  • [3] Consecutive-magic labeling of generalized Petersen graphs
    Baca, M
    UTILITAS MATHEMATICA, 2000, 58 : 237 - 241
  • [4] ON MAGIC AND CONSECUTIVE LABELINGS FOR THE SPECIAL CLASSES OF PLANE GRAPHS
    BACA, M
    UTILITAS MATHEMATICA, 1987, 32 : 59 - 65
  • [5] On consecutive edge magic total labelings of connected bipartite graphs
    Kang, Bumtle
    Kim, Suh-Ryung
    Park, Ji Yeon
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (01) : 13 - 27
  • [6] On consecutive edge magic total labelings of connected bipartite graphs
    Bumtle Kang
    Suh-Ryung Kim
    Ji Yeon Park
    Journal of Combinatorial Optimization, 2017, 33 : 13 - 27
  • [7] Consecutive z-index vertex magic labeling graphs
    Nishanthini, Radhakrishnan
    Jeyabalan, Ramasamy
    Balasundar, Samipillai
    Kumar, Gurunathan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (01) : 219 - 230
  • [8] Magic Graphs
    Hajnal, Peter
    ACTA SCIENTIARUM MATHEMATICARUM, 2014, 80 (1-2): : 352 - 353
  • [9] MAGIC GRAPHS
    STEWART, BM
    CANADIAN JOURNAL OF MATHEMATICS, 1966, 18 (05): : 1031 - &
  • [10] On magic graphs
    Yegnanarayanan, V
    UTILITAS MATHEMATICA, 2001, 59 : 181 - 204